Universal Read Analysis of DIMErs
Project description
URAdime
URAdime (Universal Read Analysis of DIMErs) is a Python package for analyzing primer sequences in sequencing data to identify dimers and chimeras.
Installation
pip install uradime
Usage
URAdime can be used both as a command-line tool and as a Python package.
Command Line Interface
# Basic usage
uradime -b input.bam -p primers.tsv -o results/my_analysis
# Full options
uradime \
-b input.bam \ # Input BAM file
-p primers.tsv \ # Primer file (tab-separated)
-o results/my_analysis \ # Output prefix
-t 8 \ # Number of threads
-m 1000 \ # Maximum reads to process (0 for all)
-c 100 \ # Chunk size for parallel processing
-u \ # Process only unaligned reads
--max-distance 2 \ # Maximum Levenshtein distance for matching
--unaligned-only \ # only check the unaligned reads
--window-size 20 \ # Allowed padding on the 5' ends of the reads, sometime needs to be very big due to universal tails etc. setting this parameter too large can cause unexpected results
--ignore-amplicon-size \ # Usefull if short read sequecing like Illumina where the paired read length is not the size of the actual amplicon
--check-termini \ # Turn off check for partial matches at read termini
--terminus-length 14 \ # Length of terminus to check for partial matches
--overlap-threshold 0.8 \ # Minimum fraction of overlap required to consider primers as overlapping (0.0-1.0), this is added for hissPCR support
--downsample 5.0 \ # Percentage of reads to randomly sample from the BAM file (0.1-100.0)
-v # Verbose output
Python Package
from uradime import bam_to_fasta_parallel, create_analysis_summary, load_primers
# Load and analyze BAM file
result_df = bam_to_fasta_parallel(
bam_path="your_file.bam",
primer_file="primers.tsv",
num_threads=4
)
# Load primers for analysis
primers_df, _ = load_primers("primers.tsv")
# Create analysis summary
summary_df, matched_pairs, mismatched_pairs = create_analysis_summary(result_df, primers_df)
Input Files
Primer File Format (TSV)
The primer file should be tab-separated with the following columns:
- Name: Primer pair name
- Forward: Forward primer sequence
- Reverse: Reverse primer sequence
- Size: Expected amplicon size
Example:
Name Forward Reverse Size
Pair1 ATCGATCGATCG TAGCTAGCTAGC 100
Pair2 GCTAGCTAGCTA CGATTCGATCGA 150
Output Files
The tool generates several CSV files with the analysis results:
*_summary.csv
: Overall analysis summary*_matched_pairs.csv
: Reads with matching primer pairs*_mismatched_pairs.csv
: Reads with mismatched primer pairs*_wrong_size_pairs.csv
: Reads with correct primer pairs but wrong size
Requirements
- Python ≥3.7
- pysam
- pandas
- biopython
- python-Levenshtein
- tqdm
- numpy
License
This project is licensed under GNU GPL.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
uradime-0.1.6.tar.gz
(79.6 kB
view details)
File details
Details for the file uradime-0.1.6.tar.gz
.
File metadata
- Download URL: uradime-0.1.6.tar.gz
- Upload date:
- Size: 79.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8463d75885395dd638adf13e45dc6705f438145e351a72eb588f05f13c9b9675 |
|
MD5 | ed26959e39a81d85da5bfa1c3c785a2f |
|
BLAKE2b-256 | e88769761c80a45754135ad3e5a0166b018ee1f732bf1bdae674d964b43127c8 |