Skip to main content

Finding valeriepieris circles

Project description

valeriepieris

vpmap

Find valeriepieris circles. There are the smallest circles containing at least a fraction f of the data. See the paper for much more details on how this works and what you can do with a valeriepieris circle.

The code expects 2d-numpy arrays from e.g. SEDAC.

Basic use

import numpy as np
input_data = np.loadtxt("gpw_v4_population_count_rev11_2020_1_deg.asc", skiprows=6 )
input_data[ input_data < 0] = 0

Then call

from valeriepieris import valeriepieris
data_bounds = [ -90,90, -180,180 ] ##[lowest lat, highest lat, lowest lon, highest lon]
target_fracs = [0.25, 0.5, 1]
rmin, smin, best_latlon, data, new_bounds  = valeriepieris(input_data,  data_bounds, target_fracs)		

This computes the centre and radius for all the target fractions

for i,f in enumerate(target_fracs):
	print("At f={}, radius={}, population={}, centre={}".format( f, rmin[i], smin[i], best_latlon[i] ) )

gives

At f=0.25, radius=1880.446017450536, population=1997830287.9875035, centre=[(25.5, 88.5)]
At f=0.5, radius=3376.532684670633, population=3985134876.8947124, centre=[(28.5, 100.5)]
At f=1, radius=14979.863821630814, population=7969444594.980903, centre=[(75.5, -112.5)]

note that each centre is a list, usually of one element, but for very small f there can be multiple centres.

Focussing on a specific area

europe_bounds = [ 34.1,80, -25,34.9 ] 
target_fracs = [0.5]
rmin, smin, best_latlon, europe_data, europe_data_bounds  = valeriepieris(input_data,  data_bounds, 0.5, target_bounds=europe_bounds)		

for i,f in enumerate(target_fracs):
  print("At f={}, radius={}, population={}, centre={}".format( f, rmin[i], smin[i], best_latlon[i] ) )
print("data in ", europe_data_bounds, "has shape", europe_data.shape)
At f=0.5, radius=946.0320718882176, population=371822374.10794944, centre=[(49.5, 9.5)]
data in  [34.1, 80, -25, 34.9] has shape (47, 61)

If the target_bounds argument is given, only data within that area will be considered. The data that was used in the calculation and its boundary (snapped to the input grid) is returned.

Focussing the search

If you think you know where the centre is, or you want the smallest circle containing a fraction f of the data, centered within a certain area do the following

data_bounds = [ -90,90, -180,180 ] ##[lowest lat, highest lat, lowest lon, highest lon]
target_fracs = [0.5]
search_bounds = [ 24,50, -125, -66 ] #~continental US
rmin, smin, best_latlon, data, new_bounds  = valeriepieris(input_data,  data_bounds, target_fracs, search_bounds=search_bounds)		

for i,f in enumerate(target_fracs):
	print("At f={}, radius={}, population={}, centre={}".format( f, rmin[i], smin[i], best_latlon[i] ) )
At f=0.5, radius=10344.885492078058, population=3987443544.209256, centre=[(50.5, -66.5)]

Plotting the circles

Remember the earth is round, so don't just draw a circle on a flat map! See test.py for code to make the plot at the top

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

valeriepieris-0.1.13.tar.gz (267.4 kB view details)

Uploaded Source

Built Distribution

valeriepieris-0.1.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (901.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

File details

Details for the file valeriepieris-0.1.13.tar.gz.

File metadata

  • Download URL: valeriepieris-0.1.13.tar.gz
  • Upload date:
  • Size: 267.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for valeriepieris-0.1.13.tar.gz
Algorithm Hash digest
SHA256 41d5115c2c2fe6379e8ad78c614f96ea802f5683be43a21adda2a72602d0d193
MD5 d5a327a45d4f96c34165ad9c5ad58dc0
BLAKE2b-256 7812a567d12ad9de252cb89064f9bc2a7ab3fdf47594d9b6aec472a5903a5ad1

See more details on using hashes here.

File details

Details for the file valeriepieris-0.1.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for valeriepieris-0.1.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a79bd5d449afe7edbb0cf2fdebcff65473fc8319cd3a366255b30dc5e134bfa4
MD5 60d8ef2caa5b840da6c0477f42cc7179
BLAKE2b-256 e11d75a4104b3226901e5d7ff4116ba764dc838eebc0c2b6f1f5073fb00379fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page