Skip to main content

Finding valeriepieris circles

Project description

valeriepieris

vpmap

Find valeriepieris circles. There are the smallest circles containing at least a fraction f of the data. See the paper for much more details on how this works and what you can do with a valeriepieris circle.

The code expects 2d-numpy arrays from e.g. SEDAC.

Basic use

import numpy as np
input_data = np.loadtxt("gpw_v4_population_count_rev11_2020_1_deg.asc", skiprows=6 )
input_data[ input_data < 0] = 0

Then call

from valeriepieris import valeriepieris
data_bounds = [ -90,90, -180,180 ] ##[lowest lat, highest lat, lowest lon, highest lon]
target_fracs = [0.25, 0.5, 1]
rmin, smin, best_latlon, data, new_bounds  = valeriepieris(input_data,  data_bounds, target_fracs)		

This computes the centre and radius for all the target fractions

for i,f in enumerate(target_fracs):
	print("At f={}, radius={}, population={}, centre={}".format( f, rmin[i], smin[i], best_latlon[i] ) )

gives

At f=0.25, radius=1880.446017450536, population=1997830287.9875035, centre=[(25.5, 88.5)]
At f=0.5, radius=3376.532684670633, population=3985134876.8947124, centre=[(28.5, 100.5)]
At f=1, radius=14979.863821630814, population=7969444594.980903, centre=[(75.5, -112.5)]

note that each centre is a list, usually of one element, but for very small f there can be multiple centres.

Focussing on a specific area

europe_bounds = [ 34.1,80, -25,34.9 ] 
target_fracs = [0.5]
rmin, smin, best_latlon, europe_data, europe_data_bounds  = valeriepieris(input_data,  data_bounds, 0.5, target_bounds=europe_bounds)		

for i,f in enumerate(target_fracs):
  print("At f={}, radius={}, population={}, centre={}".format( f, rmin[i], smin[i], best_latlon[i] ) )
print("data in ", europe_data_bounds, "has shape", europe_data.shape)
At f=0.5, radius=946.0320718882176, population=371822374.10794944, centre=[(49.5, 9.5)]
data in  [34.1, 80, -25, 34.9] has shape (47, 61)

If the target_bounds argument is given, only data within that area will be considered. The data that was used in the calculation and its boundary (snapped to the input grid) is returned.

Focussing the search

If you think you know where the centre is, or you want the smallest circle containing a fraction f of the data, centered within a certain area do the following

data_bounds = [ -90,90, -180,180 ] ##[lowest lat, highest lat, lowest lon, highest lon]
target_fracs = [0.5]
search_bounds = [ 24,50, -125, -66 ] #~continental US
rmin, smin, best_latlon, data, new_bounds  = valeriepieris(input_data,  data_bounds, target_fracs, search_bounds=search_bounds)		

for i,f in enumerate(target_fracs):
	print("At f={}, radius={}, population={}, centre={}".format( f, rmin[i], smin[i], best_latlon[i] ) )
At f=0.5, radius=10344.885492078058, population=3987443544.209256, centre=[(50.5, -66.5)]

Plotting the circles

Remember the earth is round, so don't just draw a circle on a flat map! See test.py for code to make the plot at the top

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

valeriepieris-0.1.26.tar.gz (267.4 kB view details)

Uploaded Source

Built Distribution

valeriepieris-0.1.26-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (901.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

File details

Details for the file valeriepieris-0.1.26.tar.gz.

File metadata

  • Download URL: valeriepieris-0.1.26.tar.gz
  • Upload date:
  • Size: 267.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for valeriepieris-0.1.26.tar.gz
Algorithm Hash digest
SHA256 0178f4f8e0281459ef8c13ad00eb77fe6594a6f55e524a0de4aafb35f2ec5419
MD5 60334e7121a03c241692b1181a42553f
BLAKE2b-256 a503aacf5cd3850d08e0530b6dd7a201f11ea8e71d290590a782161a8b60c798

See more details on using hashes here.

File details

Details for the file valeriepieris-0.1.26-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for valeriepieris-0.1.26-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1111aa1f9a3131159d79a14d4516a321338dd6341c13fd1e43957437e4e2e655
MD5 c219b9d48b5ce6d03201e0f897fa7761
BLAKE2b-256 c30e5e05b9242319b3a286e1e58cd3616dd8fb04c6a9ecceb2eb060c147f6bfc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page