Skip to main content

Safe, non-error-raising, alternative to Pydantic validate_call decorator

Project description

validate-call-safe

validate_call_safe is a safe, non-error-raising alternative to Pydantic's validate_call decorator. It allows you to validate function arguments while gracefully handling validation errors through an error model, inspired by effects handlers, returning them as structured data models instead of raising exceptions.

This therefore means that side effects ('erroring') are transformed into return types. The return type annotation of a decorated function is modified accordingly as the Union of the existing return type with the provided error model type.

Features

  • Validates function arguments using Pydantic's existing validate_call decorator
  • Returns a custom error model instead of raising exceptions when validation fails
  • Configurable error information, including tracebacks
  • Compatible with Pydantic v2, tested back to version 2.0.1
  • Optional model config and return value validation, as in the original Pydantic @validate_call decorator
  • Option to validate function body execution (validate_body)
  • Option to specify additional exceptions to capture when validating body execution (extra_exceptions)

Installation

pip install validate-call-safe

Usage

Basic Usage

Here's a basic example using a custom error model:

from pydantic import BaseModel
from validate_call_safe import validate_call_safe, ErrorDetails

class CustomErrorModel(BaseModel):
    error_type: str
    error_details: list[ErrorDetails]
    error_repr: str
    error_tb: str

@validate_call_safe(CustomErrorModel)
def int_noop(a: int) -> int:
    return a

success = int_noop(a=1)  # 1
failure = int_noop(a="A")  # CustomErrorModel(error_type='ValidationError', ...)

Return Value Validation

You can enable return value validation using the validate_return parameter, which is passed along to the original Pydantic @validate_call decorator flag of the same name:

@validate_call_safe(validate_return=True)
def int_noop(a: int) -> int:
    return "foo"  # This will cause a validation error

result = int_noop(a=1)  # ErrorModel(error_type='ValidationError', ...)

Function Body Validation

To capture exceptions that occur within the function body, use the validate_body parameter:

@validate_call_safe(validate_body=True)
def failing_function(name: str):
    raise ValueError(f"Invalid name: {name}")

result = failing_function("John")  # ErrorModel(error_type='ValueError', ...)

Capturing Additional Exceptions

You can specify additional exceptions to capture using the extra_exceptions parameter:

@validate_call_safe(validate_body=True, extra_exceptions=(NameError, TypeError))
def risky_function(a: int):
    if a == 1:
        raise NameError("Name not found")
    elif a == 2:
        raise TypeError("Type mismatch")
    return a

result1 = risky_function(1)  # ErrorModel(error_type='NameError', ...)
result2 = risky_function(2)  # ErrorModel(error_type='TypeError', ...)
result3 = risky_function(3)  # 3

The extra_exception default is Exception (enough for most user-level exceptions, but will not stop sys.exit calls for which you'd need to capture BaseException).

Specifying it is useful to narrow the handled exception types, as is good practice with regular try/except exception handling.

Error Model Configuration

validate_call_safe offers flexibility in specifying the error model:

  1. No brackets:

    @validate_call_safe
    def int_noop(a: int) -> int:
        return a
    
  2. Empty brackets:

    @validate_call_safe()
    def int_noop(a: int) -> int:
        return a
    
  3. Custom error model:

    @validate_call_safe(CustomErrorModel)
    def int_noop(a: int) -> int:
        return a
    
  4. With validation parameters:

    @validate_call_safe(validate_return=True)
    def int_noop(a: int) -> int:
        return a
    

Comparison with validate_call

With validate_call_safe you don't have to catch the expected ValidationError from Pydantic's validate_call:

# Using validate_call
from pydantic import validate_call

@validate_call
def unsafe_int_noop(a: int) -> int:
    return a

try:
    unsafe_int_noop(a="A")
except ValidationError as e:
    print(f"Error: {e}")

# Using validate_call_safe
from validate_call_safe import validate_call_safe

@validate_call_safe(CustomErrorModel)
def safe_int_noop(a: int) -> int:
    return a

result = safe_int_noop(a="A")
match result:
    case CustomErrorModel():
        print(f"Error: {result.error_type}")
    case int():
        ...  # Regular business logic here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

validate_call_safe-0.3.0.tar.gz (4.3 kB view details)

Uploaded Source

Built Distribution

validate_call_safe-0.3.0-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file validate_call_safe-0.3.0.tar.gz.

File metadata

  • Download URL: validate_call_safe-0.3.0.tar.gz
  • Upload date:
  • Size: 4.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.18.1 CPython/3.10.14 Linux/5.15.0-117-generic

File hashes

Hashes for validate_call_safe-0.3.0.tar.gz
Algorithm Hash digest
SHA256 48a5ff99efa568d3e53205d8d826087393569216e09fd0756f52c4fb7474e8f7
MD5 6d0515ad06b60db416fed9c5048ec052
BLAKE2b-256 e59c22f480fdfab78ae2f93b18a6ba96a9841bc8d08ac7e66856c284ea4bb4d1

See more details on using hashes here.

File details

Details for the file validate_call_safe-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: validate_call_safe-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 4.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.18.1 CPython/3.10.14 Linux/5.15.0-117-generic

File hashes

Hashes for validate_call_safe-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 20f11bc5da0e037bcda5275689895bf2c98a45126c8d7a7174584ee5d8163c59
MD5 7c479a49c17a447eb676926d0b86d51c
BLAKE2b-256 d1e08be3eb0f7824a4ea98ce689606017b3f150efc8f47b5822247b82871b9d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page