Compute valor metrics locally.
Project description
valor-lite: Fast, local machine learning evaluation.
valor-lite is a lightweight, numpy-based library designed for fast and seamless evaluation of machine learning models. It is optimized for environments where quick, responsive evaluations are essential, whether as part of a larger service or embedded within user-facing tools.
valor-lite is maintained by Striveworks, a cutting-edge MLOps company based in Austin, Texas. If you'd like to learn more or have questions, we invite you to connect with us on Slack or explore our GitHub repository.
For additional details, be sure to check out our user documentation. We're excited to support you in making the most of Valor!
Usage
Classification
from valor_lite.classification import DataLoader, Classification, MetricType
classifications = [
Classification(
uid="uid0",
groundtruth="dog",
predictions=["dog", "cat", "bird"],
scores=[0.75, 0.2, 0.05],
),
Classification(
uid="uid1",
groundtruth="cat",
predictions=["dog", "cat", "bird"],
scores=[0.41, 0.39, 0.1],
),
]
loader = DataLoader()
loader.add_data(classifications)
evaluator = loader.finalize()
metrics = evaluator.evaluate()
assert metrics[MetricType.Precision][0].to_dict() == {
'type': 'Precision',
'value': [0.5],
'parameters': {
'score_thresholds': [0.0],
'hardmax': True,
'label': 'dog'
}
}
Object Detection
from valor_lite.object_detection import DataLoader, Detection, BoundingBox, MetricType
detections = [
Detection(
uid="uid0",
groundtruths=[
BoundingBox(
xmin=0, xmax=10,
ymin=0, ymax=10,
labels=["dog"]
),
BoundingBox(
xmin=20, xmax=30,
ymin=20, ymax=30,
labels=["cat"]
),
],
predictions=[
BoundingBox(
xmin=1, xmax=11,
ymin=1, ymax=11,
labels=["dog", "cat", "bird"],
scores=[0.85, 0.1, 0.05]
),
BoundingBox(
xmin=21, xmax=31,
ymin=21, ymax=31,
labels=["dog", "cat", "bird"],
scores=[0.34, 0.33, 0.33]
),
],
),
]
loader = DataLoader()
loader.add_bounding_boxes(detections)
evaluator = loader.finalize()
metrics = evaluator.evaluate()
assert metrics[MetricType.Precision][0].to_dict() == {
'type': 'Precision',
'value': 0.5,
'parameters': {
'iou_threshold': 0.5,
'score_threshold': 0.5,
'label': 'dog'
}
}
Semantic Segmentation
import numpy as np
from valor_lite.semantic_segmentation import DataLoader, Segmentation, Bitmask, MetricType
segmentations = [
Segmentation(
uid="uid0",
groundtruths=[
Bitmask(
mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
label="sky",
),
Bitmask(
mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
label="ground",
)
],
predictions=[
Bitmask(
mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
label="sky",
),
Bitmask(
mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
label="ground",
)
]
),
]
loader = DataLoader()
loader.add_data(segmentations)
evaluator = loader.finalize()
print(metrics[MetricType.Precision][0])
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file valor_lite-0.33.17.tar.gz
.
File metadata
- Download URL: valor_lite-0.33.17.tar.gz
- Upload date:
- Size: 857.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 87598fb7f0e5a6a09fe1cca1a2b90f8bff04318e3844c229665012efc58a8c42 |
|
MD5 | 1d1b36d616537b7ab8bd5d623ee4a9dc |
|
BLAKE2b-256 | f09168c32c2a1ba32f22f188f2eeec06fdb947463cb8875651cc9ccc985b5ac4 |
File details
Details for the file valor_lite-0.33.17-py3-none-any.whl
.
File metadata
- Download URL: valor_lite-0.33.17-py3-none-any.whl
- Upload date:
- Size: 69.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d48c9794bfb197e9b3d0adf6f726c404a05b711e8cbb629a5e6f5f39bd569b5a |
|
MD5 | 861bf208303208a75caa30dc39cf945a |
|
BLAKE2b-256 | a7baf6b1b520e44d642ae62b11c2347f670dfe330be1ff8b732a63381cc5343b |