Skip to main content

Compute valor metrics locally.

Project description

valor-lite: Fast, local machine learning evaluation.

valor-lite is a lightweight, numpy-based library designed for fast and seamless evaluation of machine learning models. It is optimized for environments where quick, responsive evaluations are essential, whether as part of a larger service or embedded within user-facing tools.

valor-lite is maintained by Striveworks, a cutting-edge MLOps company based in Austin, Texas. If you'd like to learn more or have questions, we invite you to connect with us on Slack or explore our GitHub repository.

For additional details, be sure to check out our user documentation. We're excited to support you in making the most of Valor!

Usage

Classification

from valor_lite.classification import DataLoader, Classification, MetricType

classifications = [
    Classification(
        uid="uid0",
        groundtruth="dog",
        predictions=["dog", "cat", "bird"],
        scores=[0.75, 0.2, 0.05],
    ),
    Classification(
        uid="uid1",
        groundtruth="cat",
        predictions=["dog", "cat", "bird"],
        scores=[0.41, 0.39, 0.1],
    ),
]

loader = DataLoader()
loader.add_data(classifications)
evaluator = loader.finalize()

metrics = evaluator.evaluate()

assert metrics[MetricType.Precision][0].to_dict() == {
    'type': 'Precision',
    'value': [0.5],
    'parameters': {
        'score_thresholds': [0.0],
        'hardmax': True,
        'label': 'dog'
    }
}

Object Detection

from valor_lite.object_detection import DataLoader, Detection, BoundingBox, MetricType

detections = [
    Detection(
        uid="uid0",
        groundtruths=[
            BoundingBox(
                xmin=0, xmax=10,
                ymin=0, ymax=10,
                labels=["dog"]
            ),
            BoundingBox(
                xmin=20, xmax=30,
                ymin=20, ymax=30,
                labels=["cat"]
            ),
        ],
        predictions=[
            BoundingBox(
                xmin=1, xmax=11,
                ymin=1, ymax=11,
                labels=["dog", "cat", "bird"],
                scores=[0.85, 0.1, 0.05]
            ),
            BoundingBox(
                xmin=21, xmax=31,
                ymin=21, ymax=31,
                labels=["dog", "cat", "bird"],
                scores=[0.34, 0.33, 0.33]
            ),
        ],
    ),
]

loader = DataLoader()
loader.add_bounding_boxes(detections)
evaluator = loader.finalize()

metrics = evaluator.evaluate()

assert metrics[MetricType.Precision][0].to_dict() == {
    'type': 'Precision',
    'value': 0.5,
    'parameters': {
        'iou_threshold': 0.5,
        'score_threshold': 0.5,
        'label': 'dog'
    }
}

Semantic Segmentation

import numpy as np
from valor_lite.semantic_segmentation import DataLoader, Segmentation, Bitmask, MetricType

segmentations = [
    Segmentation(
        uid="uid0",
        groundtruths=[
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="sky",
            ),
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="ground",
            )
        ],
        predictions=[
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="sky",
            ),
            Bitmask(
                mask=np.random.randint(2, size=(10,10), dtype=np.bool_),
                label="ground",
            )
        ]
    ),
]

loader = DataLoader()
loader.add_data(segmentations)
evaluator = loader.finalize()

print(metrics[MetricType.Precision][0])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

valor_lite-0.33.17.tar.gz (857.8 kB view details)

Uploaded Source

Built Distribution

valor_lite-0.33.17-py3-none-any.whl (69.9 kB view details)

Uploaded Python 3

File details

Details for the file valor_lite-0.33.17.tar.gz.

File metadata

  • Download URL: valor_lite-0.33.17.tar.gz
  • Upload date:
  • Size: 857.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for valor_lite-0.33.17.tar.gz
Algorithm Hash digest
SHA256 87598fb7f0e5a6a09fe1cca1a2b90f8bff04318e3844c229665012efc58a8c42
MD5 1d1b36d616537b7ab8bd5d623ee4a9dc
BLAKE2b-256 f09168c32c2a1ba32f22f188f2eeec06fdb947463cb8875651cc9ccc985b5ac4

See more details on using hashes here.

File details

Details for the file valor_lite-0.33.17-py3-none-any.whl.

File metadata

File hashes

Hashes for valor_lite-0.33.17-py3-none-any.whl
Algorithm Hash digest
SHA256 d48c9794bfb197e9b3d0adf6f726c404a05b711e8cbb629a5e6f5f39bd569b5a
MD5 861bf208303208a75caa30dc39cf945a
BLAKE2b-256 a7baf6b1b520e44d642ae62b11c2347f670dfe330be1ff8b732a63381cc5343b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page