Skip to main content

🌈 Vancouver Watching with AI.

Project description

🌈 Vancouver Watching (vanwatch)

vanwatch 🌈 discovers and ingests images from traffic cameras in an area and then runs YOLO 🚀, OpenAI Vision, and other vision algo to extract information about urban activity at scale.

pip install vancouver-watching
 > vanwatch help
vanwatch conda create [validate,~recreate]
 . create conda environment.
vanwatch conda validate
 . validate conda environment.
vanwatch discover \
	[area=<area>,~upload] \
	[-|<object-name>] \
	[<args>]
 . discover area -> <object-name>.
vanwatch ingest \
	area=<area>,count=<count>,dryrun,gif,model=<model-id>,~process,publish,~upload \
	-|<object-name> \
	[<args>]
 . ingest <area> -> <object-name>.
vanwatch list [area=<area>,discovery|ingest,published] \
	[--count <count>] \
	[--delim space] \
	[--log 0] \
	[--offset <offset>]
 . list objects from area.
2 area(s): iran,vancouver
vanwatch list areas
 . list areas.
vanwatch vision "prompt" \
	[area=<area>,offset=<1>,auto|low|high,dryrun,~upload] \
	Davie,Bute \
	[--verbose 1]
 . openai_commands vision: prompt @ <area>/intersection.
vanwatch process \
	count=<count>,~download,gif,model=<model-id>,publish,~upload \
	.|<object-name> \
	[--detect_objects 0] \
	[--do_dryrun 1] \
	[--overwrite 1] \
	[--verbose 1]
 . process <object-name>.
vanwatch pylint
 . pylint vancouver_watching.
vanwatch update|update_cache \
	area=<vancouver>,overwrite,process,~publish,refresh,~upload \
	[--verbose 1]
 . update QGIS cache.
vancouver_watching test \
	[dryrun,~ingest,~list,~process,upload]
 . test vancouver_watching.

last build 🔗 image

discover and Ingest an Area

image

to see the list of areas supported by vanwatch type in,

vanwatch list areas

to discover the available cameras in an area type in,

vanwatch discover area=vancouver

you have generated a geojson of traffic images in the City of Vancouver. Now, you can ingest the traffic images from this area and detect people and cars in them,

vanwatch ingest area=vancouver,count=2,publish

image

model: https://hub.ultralytics.com/models/R6nMlK6kQjSsQ76MPqQM?tab=preview

image

image

image

dataset: vanwatch-cache-2024-02-28-21-04-19-26236.tar.gz (details).


PyPI version

to use on AWS SageMaker replace <plugin-name> with vanwatch and follow these instructions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vancouver_watching-3.387.1.tar.gz (15.2 kB view details)

Uploaded Source

Built Distribution

vancouver_watching-3.387.1-py3-none-any.whl (20.6 kB view details)

Uploaded Python 3

File details

Details for the file vancouver_watching-3.387.1.tar.gz.

File metadata

  • Download URL: vancouver_watching-3.387.1.tar.gz
  • Upload date:
  • Size: 15.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for vancouver_watching-3.387.1.tar.gz
Algorithm Hash digest
SHA256 ac7f1a15a92219bfb5a8557809d918e4b9b4cb2dd31e0a0fc44afd6276876381
MD5 e388e2cdd7b2f2bd0643fafd0a24ca41
BLAKE2b-256 4b5e36a35917554eeecb6964f69279758e7d3ab3fb1ae7417c9850cd7edfe40d

See more details on using hashes here.

File details

Details for the file vancouver_watching-3.387.1-py3-none-any.whl.

File metadata

File hashes

Hashes for vancouver_watching-3.387.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6c93117be40737c6f80da8cb6b95a87d482b7161b49ffb895d0675e67cb6fb46
MD5 60b2b449432d77bd931e5cbc2867c7c4
BLAKE2b-256 a7c5423b5257eb444b7ddf420478d187abf7ab6bd8fe6ea4bad3a9a5f9baf4a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page