Skip to main content

🌈 Vancouver Watching with AI.

Project description

🌈 Vancouver Watching (vanwatch)

vanwatch 🌈 discovers and ingests images from traffic cameras in an area and then runs YOLO 🚀, OpenAI Vision, and other vision algo to extract information about urban activity at scale.

pip install vancouver-watching
 > vanwatch help
vanwatch conda create [validate,~recreate]
 . create conda environment.
vanwatch conda validate
 . validate conda environment.
vanwatch discover \
	[area=<area>,~upload] \
	[-|<object-name>] \
	[<args>]
 . discover area -> <object-name>.
vanwatch ingest \
	area=<area>,count=<count>,dryrun,gif,model=<model-id>,~process,publish,~upload \
	-|<object-name> \
	[<args>]
 . ingest <area> -> <object-name>.
vanwatch list [area=<area>,discovery|ingest,published] \
	[--count <count>] \
	[--delim space] \
	[--log 0] \
	[--offset <offset>]
 . list objects from area.
2 area(s): iran,vancouver
vanwatch list areas
 . list areas.
vanwatch vision "prompt" \
	[area=<area>,offset=<1>,auto|low|high,dryrun,~upload] \
	Davie,Bute \
	[--verbose 1]
 . openai_commands vision: prompt @ <area>/intersection.
vanwatch process \
	count=<count>,~download,gif,model=<model-id>,publish,~upload \
	.|<object-name> \
	[--detect_objects 0] \
	[--do_dryrun 1] \
	[--overwrite 1] \
	[--verbose 1]
 . process <object-name>.
vanwatch pylint
 . pylint vancouver_watching.
vanwatch update|update_cache \
	area=<vancouver>,overwrite,process,~publish,refresh,~upload \
	[--verbose 1]
 . update QGIS cache.
vancouver_watching test \
	[dryrun,~ingest,~list,~process,upload]
 . test vancouver_watching.

last build 🔗 image

discover and Ingest an Area

image

to see the list of areas supported by vanwatch type in,

vanwatch list areas

to discover the available cameras in an area type in,

vanwatch discover area=vancouver

you have generated a geojson of traffic images in the City of Vancouver. Now, you can ingest the traffic images from this area and detect people and cars in them,

vanwatch ingest area=vancouver,count=2,publish

image

model: https://hub.ultralytics.com/models/R6nMlK6kQjSsQ76MPqQM?tab=preview

image

image

image

dataset: vanwatch-cache-2024-02-28-21-04-19-26236.tar.gz (details).


PyPI version

to use on AWS SageMaker replace <plugin-name> with vanwatch and follow these instructions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vancouver_watching-3.388.1.tar.gz (18.1 kB view details)

Uploaded Source

Built Distribution

vancouver_watching-3.388.1-py3-none-any.whl (25.8 kB view details)

Uploaded Python 3

File details

Details for the file vancouver_watching-3.388.1.tar.gz.

File metadata

  • Download URL: vancouver_watching-3.388.1.tar.gz
  • Upload date:
  • Size: 18.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for vancouver_watching-3.388.1.tar.gz
Algorithm Hash digest
SHA256 a8ad22bda4eaba6da9b17159b15c0b189c51430b0f39c3e8157fbc84d0053ce4
MD5 1284cea3f5d88ea684f81e9928071f37
BLAKE2b-256 deb6ff1e6680c3d76456079e06b132e718b1dd7737b2a49ae09295ea3b9bcacb

See more details on using hashes here.

File details

Details for the file vancouver_watching-3.388.1-py3-none-any.whl.

File metadata

File hashes

Hashes for vancouver_watching-3.388.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9cc0ae149b00f7256afcd04185c5cf15ec8d1c44307356731f9566c8a978bd85
MD5 afeed452b5e23d37a7ca4de6c4441b45
BLAKE2b-256 975d23974c74c6a310c54e9c643e10d29fef06fb6d251d9754d291b1abaa4cdb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page