Skip to main content

🌈 Vancouver Watching with AI.

Project description

🌈 Vancouver Watching (vanwatch)

vanwatch 🌈 discovers and ingests images from traffic cameras in an area and then runs YOLO 🚀, OpenAI Vision, and other vision algo to extract information about urban activity at scale.

pip install vancouver-watching
 > vanwatch help
vanwatch conda create [validate,~recreate]
 . create conda environment.
vanwatch conda validate
 . validate conda environment.
vanwatch discover \
	[area=<area>,~upload] \
	[-|<object-name>] \
	[<args>]
 . discover area -> <object-name>.
vanwatch ingest \
	area=<area>,count=<count>,dryrun,gif,model=<model-id>,~process,publish,~upload \
	-|<object-name> \
	[<args>]
 . ingest <area> -> <object-name>.
vanwatch list [area=<area>,discovery|ingest,published] \
	[--count <count>] \
	[--delim space] \
	[--log 0] \
	[--offset <offset>]
 . list objects from area.
2 area(s): iran,vancouver
vanwatch list areas
 . list areas.
vanwatch vision "prompt" \
	[area=<area>,offset=<1>,auto|low|high,dryrun,~upload] \
	Davie,Bute \
	[--verbose 1]
 . openai_commands vision: prompt @ <area>/intersection.
vanwatch process \
	count=<count>,~download,gif,model=<model-id>,publish,~upload \
	.|<object-name> \
	[--detect_objects 0] \
	[--do_dryrun 1] \
	[--overwrite 1] \
	[--verbose 1]
 . process <object-name>.
vanwatch pylint
 . pylint vancouver_watching.
vanwatch update|update_cache \
	area=<vancouver>,overwrite,process,~publish,refresh,~upload \
	[--verbose 1]
 . update QGIS cache.
vancouver_watching test \
	[dryrun,~ingest,~list,~process,upload]
 . test vancouver_watching.

last build 🔗 image

discover and Ingest an Area

image

to see the list of areas supported by vanwatch type in,

vanwatch list areas

to discover the available cameras in an area type in,

vanwatch discover area=vancouver

you have generated a geojson of traffic images in the City of Vancouver. Now, you can ingest the traffic images from this area and detect people and cars in them,

vanwatch ingest area=vancouver,count=2,publish

image

model: https://hub.ultralytics.com/models/R6nMlK6kQjSsQ76MPqQM?tab=preview

image

image

image

dataset: vanwatch-cache-2024-02-28-21-04-19-26236.tar.gz (details).


PyPI version

to use on AWS SageMaker replace <plugin-name> with vanwatch and follow these instructions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vancouver_watching-3.392.1.tar.gz (18.1 kB view details)

Uploaded Source

Built Distribution

vancouver_watching-3.392.1-py3-none-any.whl (25.8 kB view details)

Uploaded Python 3

File details

Details for the file vancouver_watching-3.392.1.tar.gz.

File metadata

  • Download URL: vancouver_watching-3.392.1.tar.gz
  • Upload date:
  • Size: 18.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for vancouver_watching-3.392.1.tar.gz
Algorithm Hash digest
SHA256 a7bca0c80dc1b1e1b5aa51fe031f143d913f5127230c3f20eb84487fe07cf4ec
MD5 08f3d927bd045a4b03f92d43ff80f78f
BLAKE2b-256 732f7c699da820991b95f49772539950646f4a9dc9089217956804e93d3f7d26

See more details on using hashes here.

File details

Details for the file vancouver_watching-3.392.1-py3-none-any.whl.

File metadata

File hashes

Hashes for vancouver_watching-3.392.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d51955b1d03534e0c7ca6a05ffbf5b268fb8ff8781d1d59b015f95e9961f9136
MD5 c6bce1a2447ebf7a6a5b83f969714ba7
BLAKE2b-256 979fcbe2aa66b5441ba279d16c329d375f8c5ef0c393bb81f1913653a018b4f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page