Skip to main content

🌈 Vancouver Watching with AI.

Project description

🌈 Vancouver Watching (vanwatch)

vanwatch 🌈 discovers and ingests images from traffic cameras in an area and then runs YOLO 🚀, OpenAI Vision, and other vision algo to extract information about urban activity at scale.

pip install vancouver-watching
 > vanwatch help
vanwatch conda create [validate,~recreate]
 . create conda environment.
vanwatch conda validate
 . validate conda environment.
vanwatch discover \
	[area=<area>,~upload] \
	[-|<object-name>] \
	[<args>]
 . discover area -> <object-name>.
vanwatch ingest \
	area=<area>,count=<count>,dryrun,gif,model=<model-id>,~process,publish,~upload \
	-|<object-name> \
	[<args>]
 . ingest <area> -> <object-name>.
vanwatch list [area=<area>,discovery|ingest,published] \
	[--count <count>] \
	[--delim space] \
	[--log 0] \
	[--offset <offset>]
 . list objects from area.
2 area(s): iran,vancouver
vanwatch list areas
 . list areas.
vanwatch vision "prompt" \
	[area=<area>,offset=<1>,auto|low|high,dryrun,~upload] \
	Davie,Bute \
	[--verbose 1]
 . openai_commands vision: prompt @ <area>/intersection.
vanwatch process \
	count=<count>,~download,gif,model=<model-id>,publish,~upload \
	.|<object-name> \
	[--detect_objects 0] \
	[--do_dryrun 1] \
	[--overwrite 1] \
	[--verbose 1]
 . process <object-name>.
vanwatch pylint
 . pylint vancouver_watching.
vanwatch update|update_cache \
	area=<vancouver>,overwrite,process,~publish,refresh,~upload \
	[--verbose 1]
 . update QGIS cache.
vancouver_watching test \
	[dryrun,~ingest,~list,~process,upload]
 . test vancouver_watching.

last build 🔗 image

discover and Ingest an Area

image

to see the list of areas supported by vanwatch type in,

vanwatch list areas

to discover the available cameras in an area type in,

vanwatch discover area=vancouver

you have generated a geojson of traffic images in the City of Vancouver. Now, you can ingest the traffic images from this area and detect people and cars in them,

vanwatch ingest area=vancouver,count=2,publish

image

model: https://hub.ultralytics.com/models/R6nMlK6kQjSsQ76MPqQM?tab=preview

image

image

image

dataset: vanwatch-cache-2024-02-28-21-04-19-26236.tar.gz (details).


PyPI version

to use on AWS SageMaker replace <plugin-name> with vanwatch and follow these instructions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vancouver_watching-3.395.1.tar.gz (18.2 kB view details)

Uploaded Source

Built Distribution

vancouver_watching-3.395.1-py3-none-any.whl (25.8 kB view details)

Uploaded Python 3

File details

Details for the file vancouver_watching-3.395.1.tar.gz.

File metadata

  • Download URL: vancouver_watching-3.395.1.tar.gz
  • Upload date:
  • Size: 18.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for vancouver_watching-3.395.1.tar.gz
Algorithm Hash digest
SHA256 3304dd80a856d706defc575457092896815303ad583f6262f164fedba8530ce1
MD5 910abd22a670d6f98979aef3bf06044a
BLAKE2b-256 4885a6c9cda52857f07c41736fc492298099f426b54250d425c3f64a1341e01d

See more details on using hashes here.

File details

Details for the file vancouver_watching-3.395.1-py3-none-any.whl.

File metadata

File hashes

Hashes for vancouver_watching-3.395.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6706b994f2f57631a491ea5c8699c34c91e75682cd2153d8a483909ede11b656
MD5 cc0751e7fff82a9a76e16438b78f74ce
BLAKE2b-256 dc0bd9ae1e9a8bff728cb67d3588d36b094800251df7f16ac4ca78b469709188

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page