This library uses a universal format for vector datasets to easily export and import data from all vector databases.
Project description
This library uses a universal format for vector datasets to easily export and import data from all vector databases.
See the Contributing section to add support for your favorite vector database.
Supported Vector Databases
(Request support for a VectorDB by voting/commenting here: https://github.com/AI-Northstar-Tech/vector-io/discussions/38)
Vector Database |
Import |
Export |
---|---|---|
Pinecone |
✅ |
✅ |
Qdrant |
✅ |
✅ |
Milvus |
✅ |
✅ |
GCP Vertex AI Vector Search |
✅ |
✅ |
KDB.AI |
✅ |
✅ |
Azure AI Search |
🔜 |
🔜 |
Rockset |
🔜 |
🔜 |
Vespa |
⏳ |
⏳ |
Weaviate |
⏳ |
⏳ |
MongoDB Atlas |
⏳ |
⏳ |
Epsilla |
⏳ |
⏳ |
txtai |
⏳ |
⏳ |
Redis Search |
⏳ |
⏳ |
OpenSearch |
⏳ |
⏳ |
Activeloop Deep Lake |
❌ |
❌ |
Anari AI |
❌ |
❌ |
Apache Cassandra |
❌ |
❌ |
ApertureDB |
❌ |
❌ |
Chroma |
❌ |
❌ |
ClickHouse |
❌ |
❌ |
CrateDB |
❌ |
❌ |
DataStax Astra DB |
❌ |
❌ |
Elasticsearch |
❌ |
❌ |
LanceDB |
❌ |
❌ |
Marqo |
❌ |
❌ |
Meilisearch |
❌ |
❌ |
MyScale |
❌ |
❌ |
Neo4j |
❌ |
❌ |
Nuclia DB |
❌ |
❌ |
OramaSearch |
❌ |
❌ |
pgvector |
❌ |
❌ |
Turbopuffer |
❌ |
❌ |
Typesense |
❌ |
❌ |
USearch |
❌ |
❌ |
Vald |
❌ |
❌ |
Apache Solr |
❌ |
❌ |
Universal Vector Dataset Format (VDF) specification
VDF_META.json: It is a json file with the following schema:
interface Index {
namespace: string;
total_vector_count: number;
exported_vector_count: number;
dimensions: number;
model_name: string;
vector_columns: string[];
data_path: string;
metric: 'Euclid' | 'Cosine' | 'Dot';
}
interface VDFMeta {
version: string;
file_structure: string[];
author: string;
exported_from: 'pinecone' | 'qdrant'; // others when they are added
indexes: {
[key: string]: Index[];
};
exported_at: string;
}
Parquet files/folders for metadata and vectors.
Installation
Using pip
pip install vdf-io
From source
git clone https://github.com/AI-Northstar-Tech/vector-io.git
cd vector-io
pip install -r requirements.txt
Export Script
export_vdf --help
usage: export_vdf [-h] [-m MODEL_NAME]
[--max_file_size MAX_FILE_SIZE]
[--push_to_hub | --no-push_to_hub]
[--public | --no-public]
{pinecone,qdrant,kdbai,milvus,vertexai_vectorsearch}
...
Export data from various vector databases to the VDF format
for vector datasets
options:
-h, --help show this help message and exit
-m MODEL_NAME, --model_name MODEL_NAME
Name of model used
--max_file_size MAX_FILE_SIZE
Maximum file size in MB (default:
1024)
--push_to_hub, --no-push_to_hub
Push to hub
--public, --no-public
Make dataset public (default:
False)
Vector Databases:
Choose the vectors database to export data from
{pinecone,qdrant,kdbai,milvus,vertexai_vectorsearch}
pinecone Export data from Pinecone
qdrant Export data from Qdrant
kdbai Export data from KDB.AI
milvus Export data from Milvus
vertexai_vectorsearch
Export data from Vertex AI Vector
Search
Import script
import_vdf --help
usage: import_vdf [-h] [-d DIR] [-s | --subset | --no-subset]
[--create_new | --no-create_new]
{milvus,pinecone,qdrant,vertexai_vectorsearch,kdbai}
...
Import data from VDF to a vector database
options:
-h, --help show this help message and exit
-d DIR, --dir DIR Directory to import
-s, --subset, --no-subset
Import a subset of data (default: False)
--create_new, --no-create_new
Create a new index (default: False)
Vector Databases:
Choose the vectors database to export data from
{milvus,pinecone,qdrant,vertexai_vectorsearch,kdbai}
milvus Import data to Milvus
pinecone Import data to Pinecone
qdrant Import data to Qdrant
vertexai_vectorsearch
Import data to Vertex AI Vector Search
kdbai Import data to KDB.AI
Re-embed script
This Python script is used to re-embed a vector dataset. It takes a directory of vector dataset in the VDF format and re-embeds it using a new model. The script also allows you to specify the name of the column containing text to be embedded.
reembed.py --help
usage: reembed.py [-h] -d DIR [-m NEW_MODEL_NAME]
[-t TEXT_COLUMN]
Reembed a vector dataset
options:
-h, --help show this help message and exit
-d DIR, --dir DIR Directory of vector dataset in
the VDF format
-m NEW_MODEL_NAME, --new_model_name NEW_MODEL_NAME
Name of new model to be used
-t TEXT_COLUMN, --text_column TEXT_COLUMN
Name of the column containing
text to be embedded
Examples
export_vdf -m hkunlp/instructor-xl --push_to_hub pinecone --environment gcp-starter
Follow the prompt to select the index and id range to export.
Contributing
Adding a new vector database
If you wish to add an import/export implementation for a new vector database, you must also implement the other side of the import/export for the same database. Please fork the repo and send a PR for both the import and export scripts.
Steps to add a new vector database (ABC):
Export:
Add a new subparser in export_vdf_cli.py for the new vector database. Add database specific arguments to the subparser, such as the url of the database, any authentication tokens, etc.
Add a new file in src/vdf_io/export_vdf/ for the new vector database. This file should define a class ExportABC which inherits from ExportVDF.
Specify a DB_NAME_SLUG for the class
The class should implement the get_data() function to download points (in a batched manner) with all the metadata from the specified index of the vector database. This data should be stored in a series of parquet files/folders. The metadata should be stored in a json file with the schema above.
Use the script to export data from an example index of the vector database and verify that the data is exported correctly.
Import:
Add a new subparser in import_vdf_cli.py for the new vector database. Add database specific arguments to the subparser, such as the url of the database, any authentication tokens, etc.
Add a new file in src/vdf_io/import_vdf/ for the new vector database. This file should define a class ImportABC which inherits from ImportVDF. It should implement the upsert_data() function to upload points from a vdf dataset (in a batched manner) with all the metadata to the specified index of the vector database. All metadata about the dataset should be read fro mthe VDF_META.json file in the vdf folder.
Use the script to import data from the example vdf dataset exported in the previous step and verify that the data is imported correctly.
Changing the VDF specification
If you wish to change the VDF specification, please open an issue to discuss the change before sending a PR.
Efficiency improvements
If you wish to improve the efficiency of the import/export scripts, please fork the repo and send a PR.
Questions
If you have any questions, please open an issue on the repo or message Dhruv Anand on LinkedIn
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file vdf_io-0.0.31.tar.gz
.
File metadata
- Download URL: vdf_io-0.0.31.tar.gz
- Upload date:
- Size: 44.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9ef7296bd5a0200d8de3ab931a9750e21df86fed0c35f815c2d04768eb4edb87 |
|
MD5 | 64c800060a00a38580d80ad4c203cc6d |
|
BLAKE2b-256 | 88b7a90a24fda0e053cbad04040c7c7d6d5ed85c5870dbb6751ebca6e756b5b0 |
File details
Details for the file vdf_io-0.0.31-py3-none-any.whl
.
File metadata
- Download URL: vdf_io-0.0.31-py3-none-any.whl
- Upload date:
- Size: 85.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b449a6d7d3a5ae9762a25ebc40aabd487f13dc31cc1219430196e8132a8ac4c |
|
MD5 | 1ffe0989998a8ccf77ced09490f6b963 |
|
BLAKE2b-256 | cd7114fa54f1be97b6995f36c0b92865704a4c361d3b108e3927dead48461f01 |