Skip to main content

Vectice Python library

Project description

Enabling all enterprise’s AI/ML initiatives to result in consistent and positive impact. Data scientists deserve a solution that makes all their experiment reproducible, every asset discoverable and simplifies knowledge transfer. Managers deserve a dedicated data science solution. to secure knowledge, automate reporting and simplify reviews and processes.

Supported Python Versions

Python >= 3.7.1

Documentation

Official documentation for Vectice can be found at https://doc.vectice.com

Installing

To install Vectice without any extras and get started. The following code snippet can be used.

pip install vectice

To install Vectice with any extras and get started. The following code snippet can be used. All the provided extras can be found in the documentation.

pip install vectice[extra_required]

Getting Started

The following code is just an example to test that the Vectice SDK is working as it should be. You can use an IDE or a notebook to execute this code. It’s intializing a vectice object that connects to vectice. If everything is working as it should be you’ll recieve no errors.

from vectice import Vectice
Vectice = Vectice("Team Workspace 1", "Project 1")

The Vectice SDK leverages runs as the terminology used when capturing metadata from the work you do. Thus, if you want to clean data, for example, and capture what you’ve done, you would create the inputs of the data that will be cleaned, create a run and then start it. Then you’d perform the data cleaning.

from vectice import Experiment
experiment = Experiment("My Job", "Project 1", "Team Workspace 1", job_type=JobType.PREPARATION)
experiment.use_dataset_version(dataset="DATASET_NAME_IN_VECTICE_APP")
experiment.start()

Once you’ve performed the data cleaning or any other actions you end the run by simple creating outputs and then calling the complete method.

experiment.add_dataset_version(dataset="DATASET_NAME_IN_VECTICE_APP",...)
vectice.complete()

Auto versioning

The Vectice SDK enables you to leverage auto versioning for a variety of artifacts such as datasets, models and code. Below is an example of auto versioning your code, to find out more see code auto versioning.

experiment = Experiment("My Job", "Project 1", "Team Workspace 1", auto_code=True)
experiment.start()
experiment.complete()

Integrations

Vectice integrates with popular data science tools. There are already a few integrations and MLflow is just one example and the roadmap has more exciting integrations on the way. If you would like to see more, please refer to the integrations in the documentation

MLflow

The integration of MLflow with Vectice uses the Python context manager to easily leverage MLflow with the Vectice API. The MLflow metadata is leveraged by the Vectice API and autolog allows all the metadata to be captured. Furthermore, more parameters and metrics can be captured by using MLflow methods.

mlflow.autolog()
experiment = Experiment("My Job", "Project 1", "Team Workspace 1", auto_code=True, lib=MLFlowClient())

with experiment.start():
    mlflow.log_param("algorithm", "linear regression")
    mlflow.log_metric("MAE", MAE)

Examples

There is an examples repository dedicated to providing examples of how to leverage the Vectice SDK and Vectice App, you will find integration examples and ways to leverage Vectice in a standalone approach. This can be found in the vectice-examples repository.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vectice-2.2.3.tar.gz (88.7 kB view details)

Uploaded Source

Built Distribution

vectice-2.2.3-py2.py3-none-any.whl (121.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file vectice-2.2.3.tar.gz.

File metadata

  • Download URL: vectice-2.2.3.tar.gz
  • Upload date:
  • Size: 88.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.8

File hashes

Hashes for vectice-2.2.3.tar.gz
Algorithm Hash digest
SHA256 38cb4953f8dfe5b34f1b9e573c51e4c6d2f88071e636d4afc6c42158d53598c7
MD5 26fcd9428ac7eac3a2a88c583502a83a
BLAKE2b-256 6af79a3a5d3bdf28bc8b7ae7ee327b140da4adf447c1571d820fe8a0d8e97c79

See more details on using hashes here.

File details

Details for the file vectice-2.2.3-py2.py3-none-any.whl.

File metadata

  • Download URL: vectice-2.2.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 121.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.8

File hashes

Hashes for vectice-2.2.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5710e2b2ecec28ddbedb561359f8a73e080da026501c60d6c35d935d6192d6f6
MD5 6c62b8103e0bc6d697ebb00a1fedb4c9
BLAKE2b-256 9f8d9270e24007151eb54ea4351358891b1d5b024ebc37e1668b5db63eeb08f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page