Skip to main content

Vision Xformers

Project description

ViX

PWC

Vision Xformers: Efficient Attention for Image Classification

image

We use Linear Attention mechanisms to replace quadratic attention in ViT for image classification. We show that models using linear attention and CNN embedding layers need less parameters and low GPU requirements for achieving good accuracy. These improvements can be used to democratize the use of transformers by practitioners who are limited by data and GPU.

Hybrid ViX uses convolutional layers instead of linear layer for generating embeddings

Rotary Postion Embedding (RoPE) is also used in our models instead of 1D learnable position embeddings

Nomenclature: We replace the X in ViX with the starting alphabet of the attention mechanism used Eg. When we use Performer in ViX, we replace the X with P, calling it ViP (Vision Performer)

'Hybrid' prefix is used in models which uses convolutional layers instead of linear embeddding layer.

We have added RoPE in the title of models which used Rotary Postion Embedding

The code for using all for these models for classification of CIFAR 10/Tiny ImageNet dataset is provided

Models

  • Vision Linformer (ViL)
  • Vision Performer (ViP)
  • Vision Nyströmformer (ViN)
  • FNet
  • Hybrid Vision Transformer (HybridViT)
  • Hybrid Vision Linformer (HybridViL)
  • Hybrid Vision Performer (HybridViP)
  • Hybrid Vision Nyströmformer (HybridViN)
  • Hybrid FNet
  • LeViN (Replacing Transformer in LeViT with Nyströmformer)
  • LeViP (Replacing Transformer in LeViT with Performer)
  • CvN (Replacing Transformer in CvT with Nyströmformer)
  • CvP (Replacing Transformer in CvT with Performer)
  • CCN (Replacing Transformer in CCT with Nyströmformer)
  • CCP(Replacing Transformer in CCT with Performer)

We have adapted the codes for ViT and linear transformers from @lucidrains

More information about these models can be obtained from our paper : ArXiv Paper, WACV 2022 Paper

If you wish to cite this, please use:

@misc{jeevan2021vision,
      title={Vision Xformers: Efficient Attention for Image Classification}, 
      author={Pranav Jeevan and Amit Sethi},
      year={2021},
      eprint={2107.02239},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@InProceedings{Jeevan_2022_WACV,
    author    = {Jeevan, Pranav and Sethi, Amit},
    title     = {Resource-Efficient Hybrid X-Formers for Vision},
    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
    month     = {January},
    year      = {2022},
    pages     = {2982-2990}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vision_xformer-0.1.4.tar.gz (12.9 kB view details)

Uploaded Source

Built Distribution

vision_xformer-0.1.4-py3-none-any.whl (13.9 kB view details)

Uploaded Python 3

File details

Details for the file vision_xformer-0.1.4.tar.gz.

File metadata

  • Download URL: vision_xformer-0.1.4.tar.gz
  • Upload date:
  • Size: 12.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for vision_xformer-0.1.4.tar.gz
Algorithm Hash digest
SHA256 f89371089c489b25e6ceff1d1ca205dfa26af4f5cfd3d68295c086355ef05e0c
MD5 c8e9855815055cad3290eb686d86125f
BLAKE2b-256 ed1fab21cf669cb630a20c816c1cf2e9866362c9028ec5b23a7316b6732086a6

See more details on using hashes here.

File details

Details for the file vision_xformer-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for vision_xformer-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 2ef97a119f86a368d6b4d04530e9eef3e0c09d710dffc00fc76e95c06bab9f8f
MD5 237f924d16b8777e278a1b08b7baa984
BLAKE2b-256 c548edf845a5e9d9fcdb36adf1a702674912158c371b09d2331cc050b6eff83b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page