Skip to main content

A high-throughput and memory-efficient inference and serving engine for LLMs

Project description

vLLM

Easy, fast, and cheap LLM serving for everyone

| Documentation | Blog | Paper | Discord |


The Third vLLM Bay Area Meetup (April 2nd 6pm-8:30pm PT)

We are thrilled to announce our third vLLM Meetup! The vLLM team will share recent updates and roadmap. We will also have vLLM collaborators from Roblox coming up to the stage to discuss their experience in deploying LLMs with vLLM. Please register here and join us!


Latest News 🔥

  • [2024/01] We hosted the second vLLM meetup in SF! Please find the meetup slides here.
  • [2024/01] Added ROCm 6.0 support to vLLM.
  • [2023/12] Added ROCm 5.7 support to vLLM.
  • [2023/10] We hosted the first vLLM meetup in SF! Please find the meetup slides here.
  • [2023/09] We created our Discord server! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
  • [2023/09] We released our PagedAttention paper on arXiv!
  • [2023/08] We would like to express our sincere gratitude to Andreessen Horowitz (a16z) for providing a generous grant to support the open-source development and research of vLLM.
  • [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!
  • [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click example to start the vLLM demo, and the blog post for the story behind vLLM development on the clouds.
  • [2023/06] We officially released vLLM! FastChat-vLLM integration has powered LMSYS Vicuna and Chatbot Arena since mid-April. Check out our blog post.

About

vLLM is a fast and easy-to-use library for LLM inference and serving.

vLLM is fast with:

  • State-of-the-art serving throughput
  • Efficient management of attention key and value memory with PagedAttention
  • Continuous batching of incoming requests
  • Fast model execution with CUDA/HIP graph
  • Quantization: GPTQ, AWQ, SqueezeLLM, FP8 KV Cache
  • Optimized CUDA kernels

vLLM is flexible and easy to use with:

  • Seamless integration with popular Hugging Face models
  • High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more
  • Tensor parallelism support for distributed inference
  • Streaming outputs
  • OpenAI-compatible API server
  • Support NVIDIA GPUs and AMD GPUs
  • (Experimental) Prefix caching support
  • (Experimental) Multi-lora support

vLLM seamlessly supports many Hugging Face models, including the following architectures:

  • Aquila & Aquila2 (BAAI/AquilaChat2-7B, BAAI/AquilaChat2-34B, BAAI/Aquila-7B, BAAI/AquilaChat-7B, etc.)
  • Baichuan & Baichuan2 (baichuan-inc/Baichuan2-13B-Chat, baichuan-inc/Baichuan-7B, etc.)
  • BLOOM (bigscience/bloom, bigscience/bloomz, etc.)
  • ChatGLM (THUDM/chatglm2-6b, THUDM/chatglm3-6b, etc.)
  • Command-R (CohereForAI/c4ai-command-r-v01, etc.)
  • DBRX (databricks/dbrx-base, databricks/dbrx-instruct etc.)
  • DeciLM (Deci/DeciLM-7B, Deci/DeciLM-7B-instruct, etc.)
  • Falcon (tiiuae/falcon-7b, tiiuae/falcon-40b, tiiuae/falcon-rw-7b, etc.)
  • Gemma (google/gemma-2b, google/gemma-7b, etc.)
  • GPT-2 (gpt2, gpt2-xl, etc.)
  • GPT BigCode (bigcode/starcoder, bigcode/gpt_bigcode-santacoder, etc.)
  • GPT-J (EleutherAI/gpt-j-6b, nomic-ai/gpt4all-j, etc.)
  • GPT-NeoX (EleutherAI/gpt-neox-20b, databricks/dolly-v2-12b, stabilityai/stablelm-tuned-alpha-7b, etc.)
  • InternLM (internlm/internlm-7b, internlm/internlm-chat-7b, etc.)
  • InternLM2 (internlm/internlm2-7b, internlm/internlm2-chat-7b, etc.)
  • Jais (core42/jais-13b, core42/jais-13b-chat, core42/jais-30b-v3, core42/jais-30b-chat-v3, etc.)
  • LLaMA & LLaMA-2 (meta-llama/Llama-2-70b-hf, lmsys/vicuna-13b-v1.3, young-geng/koala, openlm-research/open_llama_13b, etc.)
  • Mistral (mistralai/Mistral-7B-v0.1, mistralai/Mistral-7B-Instruct-v0.1, etc.)
  • Mixtral (mistralai/Mixtral-8x7B-v0.1, mistralai/Mixtral-8x7B-Instruct-v0.1, etc.)
  • MPT (mosaicml/mpt-7b, mosaicml/mpt-30b, etc.)
  • OLMo (allenai/OLMo-1B, allenai/OLMo-7B, etc.)
  • OPT (facebook/opt-66b, facebook/opt-iml-max-30b, etc.)
  • Orion (OrionStarAI/Orion-14B-Base, OrionStarAI/Orion-14B-Chat, etc.)
  • Phi (microsoft/phi-1_5, microsoft/phi-2, etc.)
  • Qwen (Qwen/Qwen-7B, Qwen/Qwen-7B-Chat, etc.)
  • Qwen2 (Qwen/Qwen2-7B-beta, Qwen/Qwen-7B-Chat-beta, etc.)
  • Qwen2MoE (Qwen/Qwen1.5-MoE-A2.7B, Qwen/Qwen1.5-MoE-A2.7B-Chat, etc.)
  • StableLM(stabilityai/stablelm-3b-4e1t, stabilityai/stablelm-base-alpha-7b-v2, etc.)
  • Starcoder2(bigcode/starcoder2-3b, bigcode/starcoder2-7b, bigcode/starcoder2-15b, etc.)
  • Xverse (xverse/XVERSE-7B-Chat, xverse/XVERSE-13B-Chat, xverse/XVERSE-65B-Chat, etc.)
  • Yi (01-ai/Yi-6B, 01-ai/Yi-34B, etc.)

Install vLLM with pip or from source:

pip install vllm

Getting Started

Visit our documentation to get started.

Contributing

We welcome and value any contributions and collaborations. Please check out CONTRIBUTING.md for how to get involved.

Citation

If you use vLLM for your research, please cite our paper:

@inproceedings{kwon2023efficient,
  title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
  author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},
  booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},
  year={2023}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

vllm-0.4.0-cp311-cp311-manylinux1_x86_64.whl (72.3 MB view details)

Uploaded CPython 3.11

vllm-0.4.0-cp310-cp310-manylinux1_x86_64.whl (72.3 MB view details)

Uploaded CPython 3.10

vllm-0.4.0-cp39-cp39-manylinux1_x86_64.whl (72.3 MB view details)

Uploaded CPython 3.9

vllm-0.4.0-cp38-cp38-manylinux1_x86_64.whl (72.3 MB view details)

Uploaded CPython 3.8

File details

Details for the file vllm-0.4.0-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for vllm-0.4.0-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 69ce98bba1ad1c2174b4eb98502fb80181f1fcb7653551c512662da59cb18d8c
MD5 5c1cd3f4e74217e0b72d6f45471cb638
BLAKE2b-256 76e63e4be97960eadfcc3356421258d7e753031e223fe028b110dae7e17e2dc8

See more details on using hashes here.

File details

Details for the file vllm-0.4.0-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for vllm-0.4.0-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 84360b2f15e432185ebb6079e25a4b8d5631c8fde8596deacaaa57a42bfdee57
MD5 df914599e17a075c1b8dad3a54312737
BLAKE2b-256 1c448aba4e4ef6d17c6ea7ebe302d2ebeed0bda5475353038eb2d826c94a09fe

See more details on using hashes here.

File details

Details for the file vllm-0.4.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for vllm-0.4.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 684286cbf447df76bcebc2fa0bceff98366db7b9eced4f3b27437647720d39ed
MD5 be46089757a169a37acb8a802318c05c
BLAKE2b-256 6762c84fbf0351d8d4eef13f3e9e8536aa10ea5996fbcd61aaa58659e9e84df6

See more details on using hashes here.

File details

Details for the file vllm-0.4.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for vllm-0.4.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dcabb58a29a68d4e216733a3e7ff71705e9ddee4556aa2354c2fa9860a0d3da2
MD5 366f3012766d14c0e575c68a5f5f84b1
BLAKE2b-256 ac96f30169e00633ec19245175cf0392b1381d75260f2a83544ebc2307464751

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page