Skip to main content

A library for video frame prediction using SimVP, PredRNN++, MIM, PredNet, Novel GAN and Causal LSTM.

Project description

Predicto

Predicto is a Python library for video frame prediction, featuring three state-of-the-art models: PredRNN++, MIM, and Causal LSTM. This library is designed to cater to both expert and non-expert users, providing an API for developers and a simple interface for non-experts.

<h2>Features</h2>
<ul>
    <li>Three video frame prediction models: PredRNN++, MIM, and Causal LSTM.</li>
    <li>Easy-to-use interface for training and testing models.</li>
    <li>Supports custom dataloaders or default to MovingMNIST dataset.</li>
    <li>Pre and post-processing for input and output in each model.</li>
</ul>

<h2>Installation</h2>
<pre><code>pip install predicto</code></pre>

<h2>Usage</h2>
<h3>Quick Start</h3>
<pre><code>from predicto import PredRNN, MIM, ConvLSTM, SimVP,PredNet, Novel GAN and Predicto

Create a model object

model_object = MIM()

Initialize Predicto with the model object

model = Predicto(model_object)

Train the model

model.train(train_loader)

Test the model

model.test(test_loader)

<h3>Custom Dataloader</h3>
<pre><code>from predicto import PredRNN, MIM, CausalLSTM, Predicto

Define your custom dataloader

class CustomDataLoader: def init(self, ...): ...

def __iter__(self):
    ...

Create a model object

model_object = CausalLSTM()

Initialize Predicto with the model object and custom dataloader

model = Predicto(model_object, dataloader=CustomDataLoader())

Train the model

model.train(train_loader)

Test the model

model.test(test_loader)

<h2>Models</h2>
<ul>
    <li><strong>PredRNN++</strong>: A recurrent neural network model for video frame prediction.</li>
    <li><strong>MIM</strong>: Memory In Memory network for spatiotemporal predictive learning.</li>
    <li><strong>Causal LSTM</strong>: A causal LSTM model for video frame prediction.</li>
</ul>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

vpredicto-0.2.1.tar.gz (30.5 kB view details)

Uploaded Source

Built Distribution

vpredicto-0.2.1-py3-none-any.whl (50.8 kB view details)

Uploaded Python 3

File details

Details for the file vpredicto-0.2.1.tar.gz.

File metadata

  • Download URL: vpredicto-0.2.1.tar.gz
  • Upload date:
  • Size: 30.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for vpredicto-0.2.1.tar.gz
Algorithm Hash digest
SHA256 bfbd87c3ed48d0c3670b0e0bc71b8d4f921a475b7d83098573da701bebaf8e75
MD5 e244a54a6663a989d7b3e2ad4f51b498
BLAKE2b-256 5d7421dea11207419dcac490e2fee199a3e9ff3828f356121be77b17f50f4ec5

See more details on using hashes here.

File details

Details for the file vpredicto-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: vpredicto-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 50.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for vpredicto-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 17f901633019234aae528f6eb04e792bd52580ac2163b2a09854d63913e076a4
MD5 b38e018bd180be0ecc5a74dca3ac318d
BLAKE2b-256 89c80da03c95b3fcb8dacfb9fb3302ef0a88966a8e6d6cb861787dfd4bc7ae16

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page