A library for video frame prediction using SimVP, PredRNN++, MIM, PredNet, Novel GAN and Causal LSTM.
Project description
Predicto
Predicto is a Python library for video frame prediction, featuring three state-of-the-art models: PredRNN++, MIM, and Causal LSTM. This library is designed to cater to both expert and non-expert users, providing an API for developers and a simple interface for non-experts.
<h2>Features</h2>
<ul>
<li>Three video frame prediction models: PredRNN++, MIM, and Causal LSTM.</li>
<li>Easy-to-use interface for training and testing models.</li>
<li>Supports custom dataloaders or default to MovingMNIST dataset.</li>
<li>Pre and post-processing for input and output in each model.</li>
</ul>
<h2>Installation</h2>
<pre><code>pip install predicto</code></pre>
<h2>Usage</h2>
<h3>Quick Start</h3>
<pre><code>from predicto import PredRNN, MIM, ConvLSTM, SimVP,PredNet, Novel GAN and Predicto
Create a model object
model_object = MIM()
Initialize Predicto with the model object
model = Predicto(model_object)
Train the model
model.train(train_loader)
Test the model
model.test(test_loader)
<h3>Custom Dataloader</h3>
<pre><code>from predicto import PredRNN, MIM, CausalLSTM, Predicto
Define your custom dataloader
class CustomDataLoader: def init(self, ...): ...
def __iter__(self):
...
Create a model object
model_object = CausalLSTM()
Initialize Predicto with the model object and custom dataloader
model = Predicto(model_object, dataloader=CustomDataLoader())
Train the model
model.train(train_loader)
Test the model
model.test(test_loader)
<h2>Models</h2>
<ul>
<li><strong>PredRNN++</strong>: A recurrent neural network model for video frame prediction.</li>
<li><strong>MIM</strong>: Memory In Memory network for spatiotemporal predictive learning.</li>
<li><strong>Causal LSTM</strong>: A causal LSTM model for video frame prediction.</li>
</ul>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file vpredicto-0.2.1.tar.gz
.
File metadata
- Download URL: vpredicto-0.2.1.tar.gz
- Upload date:
- Size: 30.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bfbd87c3ed48d0c3670b0e0bc71b8d4f921a475b7d83098573da701bebaf8e75 |
|
MD5 | e244a54a6663a989d7b3e2ad4f51b498 |
|
BLAKE2b-256 | 5d7421dea11207419dcac490e2fee199a3e9ff3828f356121be77b17f50f4ec5 |
File details
Details for the file vpredicto-0.2.1-py3-none-any.whl
.
File metadata
- Download URL: vpredicto-0.2.1-py3-none-any.whl
- Upload date:
- Size: 50.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 17f901633019234aae528f6eb04e792bd52580ac2163b2a09854d63913e076a4 |
|
MD5 | b38e018bd180be0ecc5a74dca3ac318d |
|
BLAKE2b-256 | 89c80da03c95b3fcb8dacfb9fb3302ef0a88966a8e6d6cb861787dfd4bc7ae16 |