PyTorch implementation of VQ-VAE
Project description
Pytorch VQVAE implementation
Example
from vqvae import VQVAE, sequential_encoder, sequential_decoder
from torch.optim import Adam
from functools import partial
input_channels = 3
output_channels = 3
embedding_length = 256
hidden_channels = 64
beta = 0.25
embedding_size = 512
opt = partial(Adam, lr=2e-4)
encoder = sequential_encoder(input_channels, embedding_size, hidden_channels) # Encoder from the paper
decoder = sequential_decoder(embedding_size, output_channels, hidden_channels) # Decoder from the paper
vqvae = VQVAE(encoder, decoder, opt, beta, embedding_length, embedding_size) # Pytorch-Lightning module,
# hence usable to train the model
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
vqvae-1.0.2.tar.gz
(11.6 kB
view details)
Built Distribution
vqvae-1.0.2-py3-none-any.whl
(1.6 kB
view details)
File details
Details for the file vqvae-1.0.2.tar.gz
.
File metadata
- Download URL: vqvae-1.0.2.tar.gz
- Upload date:
- Size: 11.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 387b7e13caa5291b248676f2b3d9e14ccbb26440373f0778e9d4a49ad13ddd81 |
|
MD5 | 4827e025586177ced8204b99caddc658 |
|
BLAKE2b-256 | 54aae2bfa2c7393bf69386696c93c551b4f03fedb9ed10842c74cd1e174bc0f0 |
File details
Details for the file vqvae-1.0.2-py3-none-any.whl
.
File metadata
- Download URL: vqvae-1.0.2-py3-none-any.whl
- Upload date:
- Size: 1.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b7c805ff0b6bd613e6e2bd477ee8cd634e8672523edb44fbf2977ef4be0ca532 |
|
MD5 | 9d95ff8550d0ad5d60644dd86f66a816 |
|
BLAKE2b-256 | 15c555a073b3e0ea61a3861f62d465472c41305029260ab59375915b221523a7 |