A simple implementation of the Volland-Stern electric field model.
Project description
vsmodel
A simple implementation of the Volland-Stern electric field model (Volland, 1973; Stern, 1975).
The electric field model here is only defined in the equatorial plane around the Earth, where any vertical component returns is filled with zeros.
The implementation of this model is based on that used by Zhao et al. 2017.
Installation
Install using this Github repo:
git clone https://github.com/mattkjames7/vsmodel
cd vsmodel
then either using setup.py
:
python3 setup.py install --user
or by creating a wheel:
python3 setup.py bdist_wheel
pip3 install dist/vsmodel-x.x.x-py3-none-any.whl --user
where x.x.x
should be replaced with the current version number.
Alternatively, install using pip3
:
pip3 install vsmodel --user
Usage
There are two functions which can be used to calculate the model electric field, one using polar coordinates and the other using the Cartesian Solar Magnetic (SM) coordinate system:
import vsmodel
#the Cartesian model
Ex,Ey,Ez = vsmodel.ModelCart(x,y,Kp)
#the polar model
Er,Et,Ep = vsmodel.ModelPol(r,phi,Kp)
where Kp
is the Kp index; x
and y
are the Cartesian coordinates in the magnetic equatorial plane (in RE, where RE=6378 km); r
and phi
are the equatorial radial distance from the centre of the Earth (in RE) and the azimuthal angle (phi
=0.0 at noon, in radians). Both functions return the electric field in units of mV/m
Plotting the model
The function vsmodel.PlotModelEq
will plot the V-S model potential, electric field, a dipole magnetic field and the ExB velocity in the equatorial plane, e.g.:
import vsmodel
import matplotlib.pyplot as plt
plt.figure(figsize=(9,8))
ax0 = vsmodel.PlotModelEq('E',Kp=1.0,maps=[2,2,0,0],fig=plt,fmt='%4.2f',scale=[0.01,10.0])
ax1 = vsmodel.PlotModelEq('E',Kp=5.0,maps=[2,2,1,0],fig=plt,fmt='%4.2f',scale=[0.01,10.0])
ax2 = vsmodel.PlotModelEq('V',Kp=1.0,maps=[2,2,0,1],fig=plt,scale=[100.0,100000.0])
ax3 = vsmodel.PlotModelEq('V',Kp=5.0,maps=[2,2,1,1],fig=plt,scale=[100.0,100000.0])
ax0.set_title('$K_p=1$')
ax2.set_title('$K_p=1$')
ax3.set_title('$K_p=5$')
ax1.set_title('$K_p=5$')
plt.tight_layout()
Which should produce this:
Alternatively, we can plot the model vectors as a field of arrows:
import vsmodel
import matplotlib.pyplot as plt
plt.figure(figsize=(9,8))
ax0 = vsmodel.PlotVectorEq('E',Kp=1.0,maps=[2,2,0,0],fig=plt,fmt='%4.2f',scale=[0.01,10.0])
ax1 = vsmodel.PlotVectorEq('E',Kp=5.0,maps=[2,2,1,0],fig=plt,fmt='%4.2f',scale=[0.01,10.0])
ax2 = vsmodel.PlotVectorEq('V',Kp=1.0,maps=[2,2,0,1],fig=plt,scale=[100.0,100000.0])
ax3 = vsmodel.PlotVectorEq('V',Kp=5.0,maps=[2,2,1,1],fig=plt,scale=[100.0,100000.0])
plt.tight_layout()
which produces:
Notes on the coordinate systems
SM
The Solar Magnetic (SM) coordinate system is defined such that the z-axis is aligned with the Earth's magnetic dipole; the x-axis lies in the plane which contains both the Earth-Sun line and the dipole axis (the x-axis points close-ish towards the Sun); the y-axis completes the right-handed set and points approximately in the opposite direction to that of the Earth's orbital motion around the Sun.
As this model is defined only in the equatorial plane, there is no input for the z coordinate; also there is not a z component to the model so Ez
is filled with zeros.
Polar
The polar coordinates used are defined such that r
is the radial distance from the centre of the planet, theta
is the polar angle (angle from the positive z-axis) and phi
is the azimuthal angle. theta
is not used as an input, it is assumed that theta=
π in the model. The outputs Er
, Et
and Ep
correspond to the radial, polar and azimuthal components of the model electric field. As with the Cartesian version of the model, there is no vertical component to the electric field model, so the Et
component is filled with zeros.
Derivation
The derivation of the model equations can be found here - if there any mistakes, please file a bug report, thanks!
References
Maynard, N. C., and Chen, A. J. (1975), Isolated cold plasma regions: Observations and their relation to possible production mechanisms, J. Geophys. Res., 80( 7), 1009– 1013, doi:10.1029/JA080i007p01009.
Stern, D. P. (1975), The motion of a proton in the equatorial magnetosphere, J. Geophys. Res., 80( 4), 595– 599, doi:10.1029/JA080i004p00595.
Volland, H. (1973), A semiempirical model of large‐scale magnetospheric electric fields, J. Geophys. Res., 78( 1), 171– 180, doi:10.1029/JA078i001p00171.
Zhao, H., Baker, D. N., Califf, S., Li, X., Jaynes, A. N., Leonard, T., … Spence, H. E. (2017). Van Allen probes measurements of energetic particle deep penetration into the low L region (L < 4) during the storm on 8 April 2016. Journal of Geophysical Research: Space Physics, 122, 12,140– 12,152. https://doi.org/10.1002/2017JA024558
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file vsmodel-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: vsmodel-1.0.0-py3-none-any.whl
- Upload date:
- Size: 12.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 93e59ea3cd3ae08394646cf14957b4ba1ecfe913a9a89bab829798bdff777590 |
|
MD5 | 6be978c37a46e3006531122ce54012b6 |
|
BLAKE2b-256 | 0688894b1176f09bb5140d8ee8529bfd54caee80ccd570c1e077aa0de7f1167e |