Skip to main content

No project description provided

Project description

Rappi's Workforce Team Data Analytics and Forecasting

This Python package provides functionality for data analysis and forecasting for Rappi's Workforce Management (WFM) system.

Installation

You can install the package using pip:

pip install workforcerappi


# #The package includes functions for processing and preparing data for analysis.

# importar librerias
from workforcerappi import data_processing as dp, modeling, order_distribution as od
import pandas as pd

# definir parametros
month="Agosto"
startdate = "2024-03-01"
FEATURES = ['dayofweek', 'quarter', 'month', 'year', 'dayofyear', 'dayofmonth', 'weekofyear']
year_month="2024-08"
TARGET = "SS" # or "BR"
SERVICE_USER_TYPE="Users"
SERVICE="Customer Live Orders"
REGION="SS" # or "BR"
concurrencia = 2  # concurrencia del servicio
sla = 0.8  # nivel de servicio
meta_aht = 10  
date_range=['2023-01-01', '2024-05-31']  

# Read orders from Snowflake
df_ordered = dp.read_and_sort_orders(date_range)

#Read Special days from Snowflake and Preprocess it
special_days=dp.preprocess_special_dates(date_range)
df_filtered = dp.filter_special_dates(df_ordered, special_days)

# Pivot Orders
orders = dp.pivot_orders(df_filtered,REGION)
data = orders.set_index("FECHA")

#Split data into train and test sets
train, test = dp.split_train_test_data(data, startdate)

# Add features like month, day of the week, week of the year, etc. from date
train = dp.create_features(train)
test = dp.create_features(test)

X_train = train[FEATURES]
y_train = train[TARGET]
X_test = test[FEATURES]
y_test = test[TARGET]

# Train the model
model = modeling.train_xgboost_model(X_train, y_train, X_test, y_test)

# Make Predictions for next months
predictions = modeling.make_predictions(model, X_test)
test['prediction'] = predictions
predictions = dp.create_future_predictions(model, FEATURES, '2024-08-01','2024-08-31', 'D')
month_to_predict = predictions

# Create Forecasted Orders Distribution
ordenes_financieras = od.create_ordenes_financieras(df_ordered, month_to_predict, ordenes_aprobadas=None, REGION=REGION , year_month=year_month)

# Create Orders Curve 
curva_ordenes = od.create_curva_ordenes(df_ordered,REGION)
# plot orders curve
reporting.plot_orders_curve(curva_ordenes)
# PxQ forecasted orders by orders curve Distribution
df3 = od.distribute_orders(ordenes_financieras, curva_ordenes)
print(df3.head())

# ajustar dias de festividades
# valor_a_ajustar = 1.30
# df3.loc[df3["FECHA"] == "2024-08-07", "CO"] *= valor_a_ajustar

# Read Inflow, AHT, CR from Snowflake Database
inflow = dp.read_cr_aht(date_range)

# Distribute inflow by interval
result=od.distribute_inflow_intraday(inflow, df3, SERVICE_USER_TYPE, SERVICE, REGION)

# Distribute aht by interval
result2 = od.distribute_aht_intraday(inflow, df3, SERVICE_USER_TYPE, SERVICE,REGION, result, meta_aht)

# Calculate Headcount based in inflow,aht, sla and concurrency 
required_headcount_df = od.hc(result,result2,sla, concurrencia)
print(required_headcount_df.head(3))

# Calculate requered hours based in headcount 
od.required_hours(required_headcount_df)
print(required_hours.head(3))

# Get the costs for the bpo (costs_webhelp,costs_brm,costs_aec)
costs_webhelp=costs.costs_webhelp(budget, SERVICE, "Septiembre")

print("Done!")


# Reporting Module:

# Time series:
reporting.plot_time_series(df_ordered, 'FECHA','ORDERS')

#Orders Curve 
reporting.plot_general_orders_curve(df_ordered, 'INTERVALO', 'ORDERS')

#Proportion of Orders by Country
reporting.plot_proportion_of_orders_by_country(df_ordered, 'ORDERS', 'COUNTRY')

# Total Numbers of orders per country
reporting.plot_total_orders_per_country(df_ordered, 'COUNTRY','ORDERS')

# Plot raw data vs predictions on test data
reporting.plot_raw_data_vs_prediction(data,X_test,test,model)

# Plot raw data vs forecasted
reporting.plot_raw_data_vs_forecasted(data,month_to_predict)

License

This project is licensed under a private license by Rappi Inc. Unauthorized copying, distribution, or modification of this project, via any medium, is strictly prohibited. For more details, please contact the legal department at Rappi.

Contact Information

For licensing inquiries, please reach out to:

© 2024 Rappi Inc. Todos los derechos reservados

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

workforcerappi-0.3.0.tar.gz (16.8 kB view details)

Uploaded Source

Built Distribution

workforcerappi-0.3.0-py3-none-any.whl (17.6 kB view details)

Uploaded Python 3

File details

Details for the file workforcerappi-0.3.0.tar.gz.

File metadata

  • Download URL: workforcerappi-0.3.0.tar.gz
  • Upload date:
  • Size: 16.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for workforcerappi-0.3.0.tar.gz
Algorithm Hash digest
SHA256 04de82ce79dd8a548629708ac90095cdb1a14ec38bed27945e42df3326170df1
MD5 a5cd521dc7b1fb85634c43b14567dbed
BLAKE2b-256 f19e26dafe94a97a47d64748522dbc843bd085799fd30f1e1f0a1a59fbb5daab

See more details on using hashes here.

File details

Details for the file workforcerappi-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for workforcerappi-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a68dad8556640cc1971c7ebaf3d68fbec3c5dd332935591e2c37cccef3df829b
MD5 cdde22a6827340ce6a3a29534bbe0d9e
BLAKE2b-256 53f52f5176ebfe0d6ad5f7803235a7bd5f87b34b814255b884d6ffc34461ad11

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page