Skip to main content

W-Train Utils for MLflow Triton Plugin

Project description

w-train-utils-mlflow-triton-plugin

가상환경 설정

pyenv install 3.8.18
pyenv virtualenv 3.8.18 wtrainclient3.8
pyenv activate wtrainclient3.8

Triton Inference Server 실행

$ docker run --rm -p8000:8000 -p8001:8001 -p8002:8002 \
    -e AWS_ACCESS_KEY_ID=<AccessKey> \
    -e AWS_SECRET_ACCESS_KEY=<SecretKey> \
    nvcr.io/nvidia/tritonserver:24.01-py3 \
    tritonserver --model-repository=s3://https://kitech-minio-api.wimcorp.dev:443/triton \
    --model-control-mode=explicit \
    --log-verbose=1

환경 변수 설정

프로젝트를 실행하기 전에 아래의 환경 변수들을 설정해야 합니다:

환경변수 설명 예시
MLFLOW_S3_ENDPOINT_URL MLflow가 저장소로 사용하고있는 MinIO 엔드포인트 URL http://localhost:9000
MLFLOW_TRACKING_URI MLflow 트래킹 서버의 URI http://localhost:5001
AWS_ACCESS_KEY_ID MinIO 서버 접근을 위한 AWS 호환 액세스 키 minio
AWS_SECRET_ACCESS_KEY MinIO 서버 접근을 위한 AWS 호환 시크릿 액세스 키 miniostorage
TRITON_URL Triton Inference Server 의 grpc 엔드포인트 URL http://localhost:8001
TRITON_MODEL_REPO Triton Inference Server 의 모델저장소 URL s3://http://localhost:9000/triton

패키지 빌드 및 업로드

# 필요한 의존성 설치
pip install wheel setuptools twine
vi ~/.pypirc

[distutils]
index-servers =
    pypi
    pypi-repository

[pypi]
  username = __token__
  password = <token>

[pypi-repository]
repository: https://<domain>/repository/<pypi-hosted>/
username: <username>
password: <password>
sh scripts/build.sh
sh scripts/deploy.sh

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wtu-mlflow-triton-plugin-0.0.15.tar.gz (11.7 kB view details)

Uploaded Source

Built Distribution

wtu_mlflow_triton_plugin-0.0.15-py3-none-any.whl (13.3 kB view details)

Uploaded Python 3

File details

Details for the file wtu-mlflow-triton-plugin-0.0.15.tar.gz.

File metadata

File hashes

Hashes for wtu-mlflow-triton-plugin-0.0.15.tar.gz
Algorithm Hash digest
SHA256 e6d1db9bc3de31f8ee2ef0ec2e612c92f4be6a9cb41da39de5d6b6840693db59
MD5 95e28079f3abd8a3b75535e74127132b
BLAKE2b-256 624bcbed4f01ae5d92ed2ec8d48cafae8ca8fa76a64fe08f4a7a1ee60fc92821

See more details on using hashes here.

File details

Details for the file wtu_mlflow_triton_plugin-0.0.15-py3-none-any.whl.

File metadata

File hashes

Hashes for wtu_mlflow_triton_plugin-0.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 912b3339a6613500bb1f00ca7ac3bedd46e1bab20ada915a316fa0cd8399981f
MD5 1cbd2873e6236e4842566c7a511580f7
BLAKE2b-256 a4480f2be6b932e72f2a02fb74a6914b3fd30cc53cb5e680a6bb6686144e718b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page