W-Train Utils for MLflow
Project description
wtrainclient
가상환경 설정
pyenv install 3.8.18
pyenv virtualenv 3.8.18 wtrainclient3.8
pyenv activate wtrainclient3.8
mlflow, minio 실행
cd docker
docker-compose up -d --build
환경 변수 설정
프로젝트를 실행하기 전에 아래의 환경 변수들을 설정해야 합니다:
환경변수 | 설명 | 예시 |
---|---|---|
PROFILE | 개발/운영 환경설정, 개발환경에서는 모델을 실제로 업르도하지 않는다 | 운영: "prod" or "production", 개발: 그 외 |
MLFLOW_S3_ENDPOINT_URL | MLflow가 저장소로 사용하고있는 MinIO 엔드포인트 URL | http://localhost:9000 |
MLFLOW_TRACKING_URI | MLflow 트래킹 서버의 URI | http://localhost:5001 |
AWS_ACCESS_KEY_ID | MinIO 서버 접근을 위한 AWS 호환 액세스 키 | minio |
AWS_SECRET_ACCESS_KEY | MinIO 서버 접근을 위한 AWS 호환 시크릿 액세스 키 | miniostorage |
RABBIT_ENDPOINT_URL | MinIO 서버에 모델 업로드 후 path 를 발행할 RMQ 엔드포인트 URL | amqp://guest:guest@localhost:5672/ |
RABBIT_MODEL_UPLOAD_TOPIC | 모델 업로드 path 를 전달할 토픽 | train.model.uploaded |
TRAIN_ID | train_id (학습 서버에서 넣어주는 값) | 1 |
MODEL_NAME | model_name (학습 서버에서 넣어주는 값) | my_model |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
wtu-mlflow-0.0.15.tar.gz
(9.1 kB
view details)
Built Distribution
File details
Details for the file wtu-mlflow-0.0.15.tar.gz
.
File metadata
- Download URL: wtu-mlflow-0.0.15.tar.gz
- Upload date:
- Size: 9.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4c86300e91ee33395f009ac397d402a2a3786d71838236eb39f02913976c789e |
|
MD5 | 3c4452a96ca5872563f874643133bbd6 |
|
BLAKE2b-256 | eef0acebd304ecf42dfa0f41f9923253d7eaba615c1ed57e07c4e28dc3258045 |
File details
Details for the file wtu_mlflow-0.0.15-py3-none-any.whl
.
File metadata
- Download URL: wtu_mlflow-0.0.15-py3-none-any.whl
- Upload date:
- Size: 12.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4c0fa745daae7f7a9121da5437ae6a89f9d2d51c88668388a04489ac9cd22aba |
|
MD5 | 0238a5ba0b096c5d2d5fcce9ebcbf9cf |
|
BLAKE2b-256 | eb8ac8cb4a57c9bcf29cb4209dee824a21c08148545cba9263fba6e916524e0a |