material descriptor library
Project description
What is XenonPy project
XenonPy is a Python library focus on the material informatics which be designed for material explore based on machine learning.
The main purpose of this project is to build a complex system to calculate various chem/phys descriptors for machine learning then extend them to explore material space. To reach this target, system also provide model training routines and try to re-use pre-trained model by various deep learning methods such as transfer learning.
This project has just started and a long way to run. The final goal of this project is to build a All-In-One virtual environment for material development come with:
Massive dataset and Pre-trained models out-of-box
Various descriptor calculation methods
Model training and re-use
Combined with deep learning methods seamless
Visualization tools for analysis and publish ready
XenonPy inspired by matminer: https://hackingmaterials.github.io/matminer/.
XenonPy is a open source project https://github.com/yoshida-lab/XenonPy.
See our documents for details: http://xenonpy.readthedocs.io
Contribution guidelines
Discussion with others
Docstring use Numpy style.
Check codes with Pylint
Writing tests if possible
Contract
Copyright and license
Code and documentation © 2017 TsumiNa. Released under the BSD-3 license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file xenonpy-0.1.0b7.tar.gz
.
File metadata
- Download URL: xenonpy-0.1.0b7.tar.gz
- Upload date:
- Size: 15.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a8798dcd06fe023bac035bcc38b6f06d7eaf9d7e3b386fbf30e4f8dc678048eb |
|
MD5 | 0e2ae7269b0b6bcb146b58c39ee4c867 |
|
BLAKE2b-256 | b0d76d8591ad45ed0be41254da9a1ab0a1c96a24f4093aa5c19ca0e7347c85d7 |