Skip to main content

A unified interface to run inference on machine learning libraries.

Project description

Python PyPI version Downloads License

Why x.infer?

If you'd like to run many models from different libraries without having to rewrite your inference code, x.infer is for you. It has a simple API and is easy to extend. Currently supports Transformers, Ultralytics, and TIMM.

Have a custom model? Create a class that implements the BaseModel interface and register it with x.infer. See Adding New Models for more details.

Key Features

x.infer
  • Unified Interface: Interact with different machine learning models through a single, consistent API.
  • Modular Design: Integrate and swap out models without altering the core framework.
  • Ease of Use: Simplifies model loading, input preprocessing, inference execution, and output postprocessing.
  • Extensibility: Add support for new models and libraries with minimal code changes.

Quickstart

Here's a quick example demonstrating how to use x.infer with a Transformers model:

Open In Colab Open In Kaggle

import xinfer

model = xinfer.create_model("vikhyatk/moondream2")

image = "https://raw.githubusercontent.com/vikhyat/moondream/main/assets/demo-1.jpg"
prompt = "Describe this image. "

model.infer(image, prompt)

>>> An animated character with long hair and a serious expression is eating a large burger at a table, with other characters in the background.

Get a list of models:

xinfer.list_models()
┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓
┃ Implementation ┃ Model ID                                        ┃ Input --> Output    ┃
┡━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩
│ timm           │ eva02_large_patch14_448.mim_m38m_ft_in22k_in1k  │ image --> class     │
│ timm           │ eva02_large_patch14_448.mim_m38m_ft_in1k        │ image --> class     │
│ timm           │ eva02_large_patch14_448.mim_in22k_ft_in22k_in1k │ image --> class     │
│ timm           │ eva02_large_patch14_448.mim_in22k_ft_in1k       │ image --> class     │
│ timm           │ eva02_base_patch14_448.mim_in22k_ft_in22k_in1k  │ image --> class     │
│ timm           │ eva02_base_patch14_448.mim_in22k_ft_in1k        │ image --> class     │
│ timm           │ eva02_small_patch14_336.mim_in22k_ft_in1k       │ image --> class     │
│ timm           │ eva02_tiny_patch14_336.mim_in22k_ft_in1k        │ image --> class     │
│ transformers   │ Salesforce/blip2-opt-6.7b-coco                  │ image-text --> text │
│ transformers   │ Salesforce/blip2-flan-t5-xxl                    │ image-text --> text │
│ transformers   │ Salesforce/blip2-opt-6.7b                       │ image-text --> text │
│ transformers   │ Salesforce/blip2-opt-2.7b                       │ image-text --> text │
│ transformers   │ vikhyatk/moondream2                             │ image-text --> text │
│ ultralytics    │ yolov8x                                         │ image --> objects   │
│ ultralytics    │ yolov8m                                         │ image --> objects   │
│ ultralytics    │ yolov8l                                         │ image --> objects   │
│ ultralytics    │ yolov8s                                         │ image --> objects   │
│ ultralytics    │ yolov8n                                         │ image --> objects   │
│ ultralytics    │ yolov10x                                        │ image --> objects   │
│ ultralytics    │ yolov10m                                        │ image --> objects   │
│ ...            │ ...                                             │ ...                 │
│ ...            │ ...                                             │ ...                 │
└────────────────┴─────────────────────────────────────────────────┴─────────────────────┘

Installation

[!IMPORTANT] You must have PyTorch installed to use x.infer.

To install the barebones x.infer (without any optional dependencies), run:

pip install xinfer

x.infer can be used with multiple optional libraries. You'll just need to install one or more of the following:

pip install "xinfer[transformers]"
pip install "xinfer[ultralytics]"
pip install "xinfer[timm]"

To install all libraries, run:

pip install "xinfer[all]"

To install from a local directory, run:

git clone https://github.com/dnth/x.infer.git
cd x.infer
pip install -e .

Usage

Supported Models

Transformers:

  • BLIP2 Series
model = xinfer.create_model("Salesforce/blip2-opt-2.7b")
  • Moondream2
model = xinfer.create_model("vikhyatk/moondream2")

[!NOTE] Wish to load an unlisted model? You can load any Vision2Seq model from Transformers by using the Vision2SeqModel class.

from xinfer.transformers import Vision2SeqModel

model = Vision2SeqModel("facebook/chameleon-7b")
model = xinfer.create_model(model)

TIMM:

  • EVA02 Series
model = xinfer.create_model("eva02_small_patch14_336.mim_in22k_ft_in1k")

[!NOTE] Wish to load an unlisted model? You can load any model from TIMM by using the TIMMModel class.

from xinfer.timm import TimmModel

model = TimmModel("resnet18")
model = xinfer.create_model(model)

Ultralytics:

  • YOLOv8 Series
model = xinfer.create_model("yolov8n")
  • YOLOv10 Series
model = xinfer.create_model("yolov10x")
  • YOLOv11 Series
model = xinfer.create_model("yolov11s")

[!NOTE] Wish to load an unlisted model? You can load any model from Ultralytics by using the UltralyticsModel class.

from xinfer.ultralytics import UltralyticsModel

model = UltralyticsModel("yolov5n6u")
model = xinfer.create_model(model)

Adding New Models

  • Step 1: Create a new model class that implements the BaseModel interface.

  • Step 2: Implement the required abstract methods load_model, infer, and infer_batch.

  • Step 3: Decorate your class with the register_model decorator, specifying the model ID, implementation, and input/output.

For example:

@xinfer.register_model("my-model", "custom", ModelInputOutput.IMAGE_TEXT_TO_TEXT)
class MyModel(BaseModel):
    def load_model(self):
        # Load your model here
        pass

    def infer(self, image, prompt):
        # Run single inference 
        pass

    def infer_batch(self, images, prompts):
        # Run batch inference here
        pass

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xinfer-0.0.5.tar.gz (27.7 MB view details)

Uploaded Source

Built Distribution

xinfer-0.0.5-py2.py3-none-any.whl (31.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file xinfer-0.0.5.tar.gz.

File metadata

  • Download URL: xinfer-0.0.5.tar.gz
  • Upload date:
  • Size: 27.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for xinfer-0.0.5.tar.gz
Algorithm Hash digest
SHA256 c487381c22f32e29b72eb3a094a92ec5f605ecd25cbbef701a5db97c750233b7
MD5 b8bbb686b62779f6f1abc623962c3c16
BLAKE2b-256 0e43c5d28705dfa4f12fe295c09ef52dcd6e292d6e1e9dd7368dc85ee48682e6

See more details on using hashes here.

File details

Details for the file xinfer-0.0.5-py2.py3-none-any.whl.

File metadata

  • Download URL: xinfer-0.0.5-py2.py3-none-any.whl
  • Upload date:
  • Size: 31.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for xinfer-0.0.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 541a0bbb494860a756b7ce0f5b476dbc46fa69f145d0cafd8ba0f52557305f7d
MD5 1cee8d61324d6c728b5a74d8352b3599
BLAKE2b-256 721d832d418fe0e86d5e42a3e7b8551f1c2c5030011c988265e0d5be519505a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page