Skip to main content

A unified interface to run inference on machine learning libraries.

Project description

Python PyPI version Downloads License

🤔 Why x.infer?

If you'd like to run many models from different libraries without having to rewrite your inference code, x.infer is for you. It has a simple API and is easy to extend. Currently supports Transformers, Ultralytics, and TIMM.

Run any supported model using the following 4 lines of code:

import xinfer

model = xinfer.create_model("vikhyatk/moondream2")
model.infer(image, prompt)         # Run single inference
model.infer_batch(images, prompts) # Run batch inference
model.launch_gradio()              # Launch Gradio interface

Have a custom model? Create a class that implements the BaseModel interface and register it with x.infer. See Adding New Models for more details.

🌟 Key Features

x.infer
  • Unified Interface: Interact with different machine learning models through a single, consistent API.
  • Modular Design: Integrate and swap out models without altering the core framework.
  • Ease of Use: Simplifies model loading, input preprocessing, inference execution, and output postprocessing.
  • Extensibility: Add support for new models and libraries with minimal code changes.

🚀 Quickstart

Here's a quick example demonstrating how to use x.infer with a Transformers model:

Open In Colab Open In Kaggle

import xinfer

model = xinfer.create_model("vikhyatk/moondream2")

image = "https://raw.githubusercontent.com/vikhyat/moondream/main/assets/demo-1.jpg"
prompt = "Describe this image. "

model.infer(image, prompt)

>>> An animated character with long hair and a serious expression is eating a large burger at a table, with other characters in the background.

Get a list of models:

xinfer.list_models()
       Available Models                                      
┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓
┃ Implementation ┃ Model ID                                        ┃ Input --> Output     ┃
┡━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩
│ timm           │ eva02_large_patch14_448.mim_m38m_ft_in22k_in1k  │ image --> categories │
│ timm           │ eva02_large_patch14_448.mim_m38m_ft_in1k        │ image --> categories │
│ timm           │ eva02_large_patch14_448.mim_in22k_ft_in22k_in1k │ image --> categories │
│ timm           │ eva02_large_patch14_448.mim_in22k_ft_in1k       │ image --> categories │
│ timm           │ eva02_base_patch14_448.mim_in22k_ft_in22k_in1k  │ image --> categories │
│ timm           │ eva02_base_patch14_448.mim_in22k_ft_in1k        │ image --> categories │
│ timm           │ eva02_small_patch14_336.mim_in22k_ft_in1k       │ image --> categories │
│ timm           │ eva02_tiny_patch14_336.mim_in22k_ft_in1k        │ image --> categories │
│ transformers   │ Salesforce/blip2-opt-6.7b-coco                  │ image-text --> text  │
│ transformers   │ Salesforce/blip2-flan-t5-xxl                    │ image-text --> text  │
│ transformers   │ Salesforce/blip2-opt-6.7b                       │ image-text --> text  │
│ transformers   │ Salesforce/blip2-opt-2.7b                       │ image-text --> text  │
│ transformers   │ fancyfeast/llama-joycaption-alpha-two-hf-llava  │ image-text --> text  │
│ transformers   │ vikhyatk/moondream2                             │ image-text --> text  │
│ transformers   │ sashakunitsyn/vlrm-blip2-opt-2.7b               │ image-text --> text  │
│ ultralytics    │ yolov8x                                         │ image --> boxes      │
│ ultralytics    │ yolov8m                                         │ image --> boxes      │
│ ultralytics    │ yolov8l                                         │ image --> boxes      │
│ ultralytics    │ yolov8s                                         │ image --> boxes      │
│ ultralytics    │ yolov8n                                         │ image --> boxes      │
│ ...            │ ...                                             │ ...                  │
│ ...            │ ...                                             │ ...                  │
└────────────────┴─────────────────────────────────────────────────┴──────────────────────┘

🖥️ Launch Gradio Interface

model.launch_gradio()

Gradio Interface

📦 Installation

[!IMPORTANT] You must have PyTorch installed to use x.infer.

To install the barebones x.infer (without any optional dependencies), run:

pip install xinfer

x.infer can be used with multiple optional libraries. You'll just need to install one or more of the following:

pip install "xinfer[transformers]"
pip install "xinfer[ultralytics]"
pip install "xinfer[timm]"

To install all libraries, run:

pip install "xinfer[all]"

To install from a local directory, run:

git clone https://github.com/dnth/x.infer.git
cd x.infer
pip install -e .

🛠️ Usage

Supported Models

Transformers:

Model Usage
BLIP2 Series xinfer.create_model("Salesforce/blip2-opt-2.7b")
Moondream2 xinfer.create_model("vikhyatk/moondream2")
VLRM-BLIP2 xinfer.create_model("sashakunitsyn/vlrm-blip2-opt-2.7b")
JoyCaption xinfer.create_model("fancyfeast/llama-joycaption-alpha-two-hf-llava")

[!NOTE] Wish to load an unsupported model? You can load any Vision2Seq model from Transformers by using the Vision2SeqModel class.

from xinfer.transformers import Vision2SeqModel

model = Vision2SeqModel("facebook/chameleon-7b")
model = xinfer.create_model(model)

TIMM: All models from TIMM fine-tuned for ImageNet 1k are supported.

[!NOTE] Wish to load an unsupported model? You can load any model from TIMM by using the TIMMModel class.

from xinfer.timm import TimmModel

model = TimmModel("resnet18")
model = xinfer.create_model(model)

Ultralytics:

Model Usage
YOLOv8 Series xinfer.create_model("yolov8n")
YOLOv10 Series xinfer.create_model("yolov10x")
YOLOv11 Series xinfer.create_model("yolov11s")

[!NOTE] Wish to load an unsupported model? You can load any model from Ultralytics by using the UltralyticsModel class.

from xinfer.ultralytics import UltralyticsModel

model = UltralyticsModel("yolov5n6u")
model = xinfer.create_model(model)

vLLM:

Model Usage
Molmo-72B xinfer.create_model("allenai/Molmo-72B-0924")
Molmo-7B-D xinfer.create_model("allenai/Molmo-7B-D-0924")
Molmo-7B-O xinfer.create_model("allenai/Molmo-7B-O-0924")

🔧 Adding New Models

  • Step 1: Create a new model class that implements the BaseModel interface.

  • Step 2: Implement the required abstract methods load_model, infer, and infer_batch.

  • Step 3: Decorate your class with the register_model decorator, specifying the model ID, implementation, and input/output.

For example:

@xinfer.register_model("my-model", "custom", ModelInputOutput.IMAGE_TEXT_TO_TEXT)
class MyModel(BaseModel):
    def load_model(self):
        # Load your model here
        pass

    def infer(self, image, prompt):
        # Run single inference 
        pass

    def infer_batch(self, images, prompts):
        # Run batch inference here
        pass

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xinfer-0.0.9.tar.gz (32.7 MB view details)

Uploaded Source

Built Distribution

xinfer-0.0.9-py2.py3-none-any.whl (36.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file xinfer-0.0.9.tar.gz.

File metadata

  • Download URL: xinfer-0.0.9.tar.gz
  • Upload date:
  • Size: 32.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for xinfer-0.0.9.tar.gz
Algorithm Hash digest
SHA256 47868892e36a1fec9b0ef549858e4a6d6f9ba216323ccf7be72fbc6e24d46d78
MD5 d7ff1d64103762d0a40dd821ac27bc96
BLAKE2b-256 038b7289ee535c71c5dfa350e9c1d1a2d6e3eff5d55a837ebb3bddbc49a3a248

See more details on using hashes here.

File details

Details for the file xinfer-0.0.9-py2.py3-none-any.whl.

File metadata

  • Download URL: xinfer-0.0.9-py2.py3-none-any.whl
  • Upload date:
  • Size: 36.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for xinfer-0.0.9-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 9162455bfb429eb2f96f69f5d9df6457deabe5cd8ae6c7f4ceb53d1a651d1141
MD5 971f4e16104b1a609aa01a3ef92689ae
BLAKE2b-256 7ccfbe6bfc39a2db813deee90d04f19764ad42899db2cac20628b9f1ae4169f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page