Skip to main content

Yet Another Python Profiler

Project description

yappi

Yappi

A tracing profiler that is multithreading, asyncio and gevent aware.

FreePalestine.Dev

From the river to the sea, Palestine will be free

Highlights

  • Fast: Yappi is fast. It is completely written in C and lots of love and care went into making it fast.
  • Unique: Yappi supports multithreaded, asyncio and gevent profiling. Tagging/filtering multiple profiler results has interesting use cases.
  • Intuitive: Profiler can be started/stopped and results can be obtained from any time and any thread.
  • Standards Compliant: Profiler results can be saved in callgrind or pstat formats.
  • Rich in Feature set: Profiler results can show either Wall Time or actual CPU Time and can be aggregated from different sessions. Various flags are defined for filtering and sorting profiler results.
  • Robust: Yappi has been around for years.

Motivation

CPython standard distribution comes with three deterministic profilers. cProfile, Profile and hotshot. cProfile is implemented as a C module based on lsprof, Profile is in pure Python and hotshot can be seen as a small subset of a cProfile. The major issue is that all of these profilers lack support for multi-threaded programs and CPU time.

If you want to profile a multi-threaded application, you must give an entry point to these profilers and then maybe merge the outputs. None of these profilers are designed to work on long-running multi-threaded applications. It is also not possible to profile an application that start/stop/retrieve traces on the fly with these profilers.

Now fast forwarding to 2019: With the latest improvements on asyncio library and asynchronous frameworks, most of the current profilers lacks the ability to show correct wall/cpu time or even call count information per-coroutine. Thus we need a different kind of approach to profile asynchronous code. Yappi, with v1.2 introduces the concept of coroutine profiling. With coroutine-profiling, you should be able to profile correct wall/cpu time and call count of your coroutine. (including the time spent in context switches, too). You can see details here.

Installation

Can be installed via PyPI

$ pip install yappi

OR from the source directly.

$ pip install git+https://github.com/sumerc/yappi#egg=yappi

Examples

A simple example:

import yappi

def a():
    for _ in range(10000000):  # do something CPU heavy
        pass

yappi.set_clock_type("cpu") # Use set_clock_type("wall") for wall time
yappi.start()
a()

yappi.get_func_stats().print_all()
yappi.get_thread_stats().print_all()
'''

Clock type: CPU
Ordered by: totaltime, desc

name                                  ncall  tsub      ttot      tavg      
doc.py:5 a                            1      0.117907  0.117907  0.117907

name           id     tid              ttot      scnt        
_MainThread    0      139867147315008  0.118297  1
'''

Profile a multithreaded application:

You can profile a multithreaded application via Yappi and can easily retrieve per-thread profile information by filtering on ctx_id with get_func_stats API.

import yappi
import time
import threading

_NTHREAD = 3


def _work(n):
    time.sleep(n * 0.1)


yappi.start()

threads = []
# generate _NTHREAD threads
for i in range(_NTHREAD):
    t = threading.Thread(target=_work, args=(i + 1, ))
    t.start()
    threads.append(t)
# wait all threads to finish
for t in threads:
    t.join()

yappi.stop()

# retrieve thread stats by their thread id (given by yappi)
threads = yappi.get_thread_stats()
for thread in threads:
    print(
        "Function stats for (%s) (%d)" % (thread.name, thread.id)
    )  # it is the Thread.__class__.__name__
    yappi.get_func_stats(ctx_id=thread.id).print_all()
'''
Function stats for (Thread) (3)

name                                  ncall  tsub      ttot      tavg
..hon3.7/threading.py:859 Thread.run  1      0.000017  0.000062  0.000062
doc3.py:8 _work                       1      0.000012  0.000045  0.000045

Function stats for (Thread) (2)

name                                  ncall  tsub      ttot      tavg
..hon3.7/threading.py:859 Thread.run  1      0.000017  0.000065  0.000065
doc3.py:8 _work                       1      0.000010  0.000048  0.000048


Function stats for (Thread) (1)

name                                  ncall  tsub      ttot      tavg
..hon3.7/threading.py:859 Thread.run  1      0.000010  0.000043  0.000043
doc3.py:8 _work                       1      0.000006  0.000033  0.000033
'''

Different ways to filter/sort stats:

You can use filter_callback on get_func_stats API to filter on functions, modules or whatever available in YFuncStat object.

import package_a
import yappi
import sys

def a():
    pass

def b():
    pass

yappi.start()
a()
b()
package_a.a()
yappi.stop()

# filter by module object
current_module = sys.modules[__name__]
stats = yappi.get_func_stats(
    filter_callback=lambda x: yappi.module_matches(x, [current_module])
)  # x is a yappi.YFuncStat object
stats.sort("name", "desc").print_all()
'''
Clock type: CPU
Ordered by: name, desc

name                                  ncall  tsub      ttot      tavg
doc2.py:10 b                          1      0.000001  0.000001  0.000001
doc2.py:6 a                           1      0.000001  0.000001  0.000001
'''

# filter by function object
stats = yappi.get_func_stats(
    filter_callback=lambda x: yappi.func_matches(x, [a, b])
).print_all()
'''
name                                  ncall  tsub      ttot      tavg
doc2.py:6 a                           1      0.000001  0.000001  0.000001
doc2.py:10 b                          1      0.000001  0.000001  0.000001
'''

# filter by module name
stats = yappi.get_func_stats(filter_callback=lambda x: 'package_a' in x.module
                             ).print_all()
'''
name                                  ncall  tsub      ttot      tavg
package_a/__init__.py:1 a             1      0.000001  0.000001  0.000001
'''

# filter by function name
stats = yappi.get_func_stats(filter_callback=lambda x: 'a' in x.name
                             ).print_all()
'''
name                                  ncall  tsub      ttot      tavg
doc2.py:6 a                           1      0.000001  0.000001  0.000001
package_a/__init__.py:1 a             1      0.000001  0.000001  0.000001
'''

Profile an asyncio application:

You can see that coroutine wall-time's are correctly profiled.

import asyncio
import yappi

async def foo():
    await asyncio.sleep(1.0)
    await baz()
    await asyncio.sleep(0.5)

async def bar():
    await asyncio.sleep(2.0)

async def baz():
    await asyncio.sleep(1.0)

yappi.set_clock_type("WALL")
with yappi.run():
    asyncio.run(foo())
    asyncio.run(bar())
yappi.get_func_stats().print_all()
'''
Clock type: WALL
Ordered by: totaltime, desc

name                                  ncall  tsub      ttot      tavg      
doc4.py:5 foo                         1      0.000030  2.503808  2.503808
doc4.py:11 bar                        1      0.000012  2.002492  2.002492
doc4.py:15 baz                        1      0.000013  1.001397  1.001397
'''

Profile a gevent application:

You can use yappi to profile greenlet applications now!

import yappi
from greenlet import greenlet
import time

class GreenletA(greenlet):
    def run(self):
        time.sleep(1)

yappi.set_context_backend("greenlet")
yappi.set_clock_type("wall")

yappi.start(builtins=True)
a = GreenletA()
a.switch()
yappi.stop()

yappi.get_func_stats().print_all()
'''
name                                  ncall  tsub      ttot      tavg
tests/test_random.py:6 GreenletA.run  1      0.000007  1.000494  1.000494
time.sleep                            1      1.000487  1.000487  1.000487
'''

Documentation

Related Talks

Special thanks to A.Jesse Jiryu Davis:

PyCharm Integration

Yappi is the default profiler in PyCharm. If you have Yappi installed, PyCharm will use it. See the official documentation for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yappi-1.5.1.tar.gz (59.6 kB view details)

Uploaded Source

Built Distributions

yappi-1.5.1-cp311-cp311-win_amd64.whl (34.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

yappi-1.5.1-cp311-cp311-win32.whl (31.9 kB view details)

Uploaded CPython 3.11 Windows x86

yappi-1.5.1-cp311-cp311-musllinux_1_1_x86_64.whl (97.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

yappi-1.5.1-cp311-cp311-musllinux_1_1_i686.whl (94.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

yappi-1.5.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (79.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

yappi-1.5.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (76.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

yappi-1.5.1-cp311-cp311-macosx_10_9_x86_64.whl (32.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

yappi-1.5.1-cp310-cp310-win_amd64.whl (34.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

yappi-1.5.1-cp310-cp310-win32.whl (31.8 kB view details)

Uploaded CPython 3.10 Windows x86

yappi-1.5.1-cp310-cp310-musllinux_1_1_x86_64.whl (95.6 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

yappi-1.5.1-cp310-cp310-musllinux_1_1_i686.whl (91.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

yappi-1.5.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (79.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

yappi-1.5.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (75.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

yappi-1.5.1-cp310-cp310-macosx_10_9_x86_64.whl (32.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

yappi-1.5.1-cp39-cp39-win_amd64.whl (34.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

yappi-1.5.1-cp39-cp39-win32.whl (31.8 kB view details)

Uploaded CPython 3.9 Windows x86

yappi-1.5.1-cp39-cp39-musllinux_1_1_x86_64.whl (94.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

yappi-1.5.1-cp39-cp39-musllinux_1_1_i686.whl (90.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

yappi-1.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

yappi-1.5.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (74.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

yappi-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl (32.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

yappi-1.5.1-cp38-cp38-win_amd64.whl (34.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

yappi-1.5.1-cp38-cp38-win32.whl (31.8 kB view details)

Uploaded CPython 3.8 Windows x86

yappi-1.5.1-cp38-cp38-musllinux_1_1_x86_64.whl (96.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

yappi-1.5.1-cp38-cp38-musllinux_1_1_i686.whl (92.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

yappi-1.5.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (78.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

yappi-1.5.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (75.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

yappi-1.5.1-cp38-cp38-macosx_10_9_x86_64.whl (32.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

yappi-1.5.1-cp37-cp37m-win_amd64.whl (34.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

yappi-1.5.1-cp37-cp37m-win32.whl (31.7 kB view details)

Uploaded CPython 3.7m Windows x86

yappi-1.5.1-cp37-cp37m-musllinux_1_1_x86_64.whl (95.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

yappi-1.5.1-cp37-cp37m-musllinux_1_1_i686.whl (91.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

yappi-1.5.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (76.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

yappi-1.5.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (73.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

yappi-1.5.1-cp37-cp37m-macosx_10_9_x86_64.whl (32.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

yappi-1.5.1-cp36-cp36m-win_amd64.whl (37.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

yappi-1.5.1-cp36-cp36m-win32.whl (33.6 kB view details)

Uploaded CPython 3.6m Windows x86

yappi-1.5.1-cp36-cp36m-musllinux_1_1_x86_64.whl (95.2 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

yappi-1.5.1-cp36-cp36m-musllinux_1_1_i686.whl (91.0 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

yappi-1.5.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (75.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

yappi-1.5.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (72.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

yappi-1.5.1-cp36-cp36m-macosx_10_9_x86_64.whl (32.3 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file yappi-1.5.1.tar.gz.

File metadata

  • Download URL: yappi-1.5.1.tar.gz
  • Upload date:
  • Size: 59.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for yappi-1.5.1.tar.gz
Algorithm Hash digest
SHA256 bcc318c1a81e66ae797e9887ec9d04e3501a34e11c4068fb77bcf9af2233788d
MD5 cc8a66a978211d19ddfa610857bdb124
BLAKE2b-256 574b02b359b57343b68f94964d6254e74717b75f2a82581e5ef5fc822556fc01

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: yappi-1.5.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 34.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for yappi-1.5.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2eb4094239c7beb1cc23be7592400cf8d2c68bc84ba061ff3bf998ed5687c962
MD5 41fced2ec81aaba7387dbc29ba321be2
BLAKE2b-256 6627ab1dbb689e3f93ed8c10c80973c4500cb0f6c2ae35eeffb0074ab2d67e9e

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: yappi-1.5.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 31.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for yappi-1.5.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 7a204cd8c052eeb528e026e65eae9e9e1c2e1ee9f254ecbdfccc4ce4beee2a98
MD5 1c54abf53b4c6045b6fbeb0e1ce5aa50
BLAKE2b-256 7d90b84c307f39a6ae39b5671d7cc6180561e8349467e79fcfadc4e2d2205ecc

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1e382662ef846e9c94b1f876bdefe5311be6973d95c205d56a74f7155c4a4f39
MD5 ed0691aa9d485fa6a311833468a16951
BLAKE2b-256 60b309a70162319bfbd7a9689cabd836d2d0d2c2e37701d446bbdda0e9e7c0b2

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1e97d7ac272cf31f2e26eadc5517510268a7cc425b64e15680582550d6a7e9a8
MD5 b43e13943904e3b5788de9c2c8f5d51a
BLAKE2b-256 3cc7288d177537f156c1ce4b85df15b46c4dfcecf6c537fb7d48c9b013feb10c

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5a29d0dba485f83ebf022dfdbb543e5789d940818709066ee44289fa6f2a1cb
MD5 d02e5e29fb97852b9adfc14cb9649398
BLAKE2b-256 cdcaf845a72c01bebd187b73ac6dfdbe30ce25b1799e4eb0bbb4e968cd97955c

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 44dae39dbb74a3c8b42dd0eb66fe1f112aabc264431e43f7337f587054e57ed4
MD5 16b8cb33cf939a8f8583e80a465f85ea
BLAKE2b-256 2ad99ccff479c488c1563901cdbf6e977551a835315e2e4b7f35f2f778dbc0cf

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 945cf6a7dd86340527b6bafc663cc7db550e1b09d9473bcb9ca3a44767e57609
MD5 868cf1eab96daa634175bf67f358daae
BLAKE2b-256 2154f1a1bf65af437cf84c87351e815ed67bae88719a2342da4d554fa9ff6bc2

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: yappi-1.5.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 34.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for yappi-1.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a117ed88c3dc86ad57a75cee0bac534cab5b74aa9290f452378b7c332b6b15a1
MD5 05dc62d4c5c99f643f0a4b4467d23c4b
BLAKE2b-256 2f9f9c0c09be84b4e4034bdedfe39bdd17d7ba776e27e4c4894620a9b6fc07b1

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: yappi-1.5.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 31.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for yappi-1.5.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2c7622ee1a226d38a798f9f4ca6c9e4b4c0bf6302e9e96cfac2efd79a2d69069
MD5 792e08078ef9bd061a32eb31e2e3d8e5
BLAKE2b-256 5c61c5cc4a8ccb11d04abe2270927fee70c408d968337829dab7bb72fccec3ab

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0f78652ac969f997cc6426ac0f085f0dc2555ef3616eed30a661790d9beb26d3
MD5 a97ebd064b44ef99f8e040f60a2b9612
BLAKE2b-256 d9327f1d8a53516a2e53a7a1f64ee83339321941848c35969c43497a26218df4

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c3fdde958f688c97d7fc23ac2fa60564a84650addd80472383d7f091e4603a78
MD5 fb479bc27bf5e0e6fb490a18121658ad
BLAKE2b-256 e4ffedd52c220ac8215d59045576e00afdc393cfda77fe7196cc837f51a2b743

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a35f2fe7c1b9b60fe4f2be7345c94b0e40fda5125ca35ecd6ec6f072fb33e49d
MD5 23ef0454cf96cbdc16913a3a8b76c4f9
BLAKE2b-256 cd2abcbbdfef9838104afcfb4409649e27cb774a7501b6dc9145d2e792296965

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 573ae3a3ce42518e359f483934042263a8b1784374921f146c33de9beeed7028
MD5 0de3be1369edf62e99f688aa3d4754e8
BLAKE2b-256 ef32ec2139d9d9e744b102489cf39dd75c0668a492703d36600e61ddd9fde66f

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5a1d226e65ca12d9895655540938d5046578cd99301e8076d3fb604be7c53f67
MD5 1161d121129d5db400e6357d52ea64e3
BLAKE2b-256 29f35ff5cf85f102affb36dd7b717cb793c61a2add277638a6ad41c2fc5610ab

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: yappi-1.5.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 34.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for yappi-1.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 59ff5213c969c0c35c0eaefc2e9c44b6e54f5e664b480e079f393e06bc5eb4fe
MD5 a4581f1b89916d271be08d94907f190e
BLAKE2b-256 44de54bb7125553ed676aa2052b6ab89b3f80ff1174e396a549071df11c9a675

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: yappi-1.5.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 31.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for yappi-1.5.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2ebdb07990e199fe00c53df66e196d340e4cfe8f7d3b734401235285cfd7d25a
MD5 1a7dc81a629bb239ea32c4c8d4c40fed
BLAKE2b-256 1dd5d40fa14d0980ce6193f4a4f2f32c80d5b22aaba1ef566056119a0e46271c

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 58914a724aa2a98b52a2e683ecf2e22210d273f9333f1f26d18ecfb02c229514
MD5 441f4be17a4fb963d576f47afe6388ac
BLAKE2b-256 27ea45bd0d7228b58bfe9ef7d9938b390f95259db164d60a649cc2028a983819

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a174ce23ef2d97b43f2f8ec923cb1956dc111b94f39fa4bc8df8e3fff8b0aa70
MD5 3667abcc7f98c755ccf1ecf0d1973980
BLAKE2b-256 2b6b086f6c4b0ace947b054037a203dde2b98e83cbd7bcc0b73ee9a32491758a

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e776dec9f6b793c01a14383ce1569edf39aef1b27d413dd0f218540cc8a36bbb
MD5 8d4ea97bf067e82d7e44d8dbd09fae4b
BLAKE2b-256 ec31dd43f4bc4be7b0b772a9892f282d3841de6ebde2e49b50cc56f76f5afae0

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f7a17974234af25617353ea78da06389d99d98898a6ecf16177ad008a9f59a7f
MD5 bf7803ecf084de92074115e4a66e7a86
BLAKE2b-256 d7965c5c6b2e6ad02ad8fcc732af6ab2aa166ae6e088fe3e3dc4c0f1610a82f0

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 44a2f13ab11aa5c02a239b9456de3df62bd5e7719f416353b506a589f4a3e64e
MD5 179964602d129fbad0e5b3277136989a
BLAKE2b-256 615108160e452ad64417dd5cf05c0529cfbc8d5988e13d7b7cecdc5f069fa0e5

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: yappi-1.5.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 34.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for yappi-1.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bf6553261faef553a23bd864f23f3b0970cd7ae007aed2a065e17ad3d0ff60f4
MD5 d0b7dac9b0622c5dd712365c3529a331
BLAKE2b-256 435600db888c98411c09e013e2eb99c6497aee897a97e26aa8a1708157dc36e8

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: yappi-1.5.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 31.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for yappi-1.5.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 71564ca418d56fe63c9dfa987f51d6a396ae57662363202b57b9241e6713b70b
MD5 edebf7f5d939eb224107a623d0a61a3f
BLAKE2b-256 eebfc164f8b876219bdc4cbefb1001a9b976fa98f9907afc5cb2b77e7400a0be

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 419e35564bd4e38c83df1dd469d3f71bc93f30ec4393b83afa310bfcbd05d854
MD5 34fee64f9923bd998377e0933cd4ae6a
BLAKE2b-256 1d559a135a9a6f805350c1374699774439541da984d5a5a868541c89f7f0c5e5

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4701cc2a2b1f0d5a259713d5dd9f47876abec48e0c582ed39b7d2743056575a0
MD5 ffb9aa0ba8aceda4d29f50ef18857d83
BLAKE2b-256 65f2639815b0373c3e4fe5403d4cdf96867e0e0a20cbd8cfd6c2f965fa5ccddf

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84433e8800016936ceefd42b9902330d78864fb54f90aa3b399cc7960eeaa87f
MD5 c6b6d835272f0db4d0f6da3016c71f85
BLAKE2b-256 b046727ce7d2dd3bb0a05d20a221352f09a78d2e517e5dc078b2d0e127fbe525

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eccdca9f79c402c0e37e13a97597e338c7db0867c2b07c9c716a388a0b196e1b
MD5 24b78b23e18f2d7c40122ee247b08b2e
BLAKE2b-256 411de48c37e9620ff3989b4ee4e98b7f3d80ced1109521b363a8477e3f826bbf

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 66816cb9f4edd3f93c4c03480d636719e6680129ebe0cba0d3076703d7cf06e3
MD5 ae6af0825c1befd603895179bf909d1f
BLAKE2b-256 6f8ecb50d5c75c19ecd3367554f73caca23c644180aa1312a8b08debaea99112

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: yappi-1.5.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 34.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for yappi-1.5.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2d375caccc158c6250892f50a3bf0d42c86288136593eae0c1da50636e8eda28
MD5 3dd5fe6d685d6ee06c10e9c89b75678f
BLAKE2b-256 402691e3fc56ce122d37b2bf961f9d12cfb5212d9b8ef6b5edd9693299c2a787

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: yappi-1.5.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 31.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for yappi-1.5.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c171938abce622744e31bbd01df2bee785e74d26fcf939c8a0aef478ca1bac4b
MD5 81c45f1b7d7708de36a8ca606a737760
BLAKE2b-256 46f2688e443eb0b764777e31b1325b7b52621df79b01d46ad31eeee7d8ccd4d2

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c7b2f301a8a161835f787ce71d42d4c32ef34b64ea2bf10dacb22aba4f2bdcf6
MD5 de8622cb0919fb6407cb36051f63c698
BLAKE2b-256 9defb42bc89371f8164e5aa3be96953a2cf00b01b5ef3ac321ea035bd0e1d386

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5d9657594681f043b943367cace220ddd6ddcb89165fbb1991420e1ed1a8c57c
MD5 d8a3db615e07bb9e2a98debcb4a4bac1
BLAKE2b-256 8eb49a17761c2bbc05e3d0a95ecbd73a6b59bb9751370362c87fc61b9cbdbd70

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f084c480e9307707dcc6a5449f3e33514bbe14b9ccf306ff21019ae5fd320121
MD5 48cb7603f3b612f1dfed2c66b00f3b1c
BLAKE2b-256 cc03a1c538c21308852c55750ff305e3be1c89d2fd3af0c0ba583e997a95f1f4

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6fab99aecf31539a6671e99927eea9ff1ff31837ee3003f4286614a01c1224b6
MD5 4ea0d52d04d01e1a108a0e03bde973ae
BLAKE2b-256 9fe44ecd84a9ccafa544460d56f3c0e1034adf6bf2b87ce8d8a9b0ecdd085235

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a650a77f00c153ed23d88173cadeeed42b2808f409221d268ff39577ea011cb5
MD5 11b1f7e5e73e652ca96e0887cffcd203
BLAKE2b-256 6e160ad1dd9b27ee6b6443659a4b24b36a40449e39669ee3ce6276bc7fdb0b76

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: yappi-1.5.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 37.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for yappi-1.5.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 53a920262ef7f3a08296be2f01ac6f79fd65dee69c7156b284cb5a62460e3a87
MD5 aefb2d7fe026794bce95d1c67a38510e
BLAKE2b-256 50828207ef31bd5f3e1faacafb24b70a17fe84a431c92edff8c019603cd6ca44

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: yappi-1.5.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 33.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for yappi-1.5.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 637b69ebdcea0faca920bf0c0d6ef8258564ea468f12eed40bec6355650bebcc
MD5 443f543423b4c68d8b050ef068c3486d
BLAKE2b-256 7cac82b7b29eafc9e5fceb105e46b1ccc4815f661f98274ed6a00ef4ce393a80

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a9518ac3435d41720079a10433719d3647e36719311f41897996e8f80124ef8b
MD5 bfd444863b9095f4cf95cadb85064e15
BLAKE2b-256 20f498f6b6c136ad753760a49ca5af842ce4ac5be91a412448eb853c650ea530

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2bf7e4b37651dca978aa5c50dade3b39cf2d9f0d2e2289cb99590c3c3d6e61ae
MD5 f0d1e7a2ad9f6675c8efb6c83f39b803
BLAKE2b-256 f93010e537f70ee6ae48dade57a5af2b7cc13967dc6ec752953a3b5f157fe89f

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bfef5b83fdbe8d9a76f60fa1e05222c4f9f91742bcf2fc071748c72aa447994b
MD5 20a32d7f193bc9cec1886932cb73d43d
BLAKE2b-256 17ecbbe2eb7fbd91f5dd6477c68cd382abc9d04d3103c08a26acca0a58f67862

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 513f78e697e03d8e000293d101442b564667523953e88ea2164e0e58b61e9ea8
MD5 552a58465e860f6fa447b46f390ab649
BLAKE2b-256 417a6f090be6ae50a726f59d466750f69d5b120f074f17c6b092724052e74bc0

See more details on using hashes here.

File details

Details for the file yappi-1.5.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for yappi-1.5.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 56216ce0e88e4720a20b3f2f03e15a3e5b2335382630958a2f17e622a4df8342
MD5 cbc68f23d94eef8041414527004f58f1
BLAKE2b-256 daaaef51b8e1fbc723e252b1e118df736ef0ab7e3fdf5ccab00411f0dd472ae7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page