Skip to main content

Synthetic data generation methods with different synthetization methods.

Project description

YData Synthetic Logo

Join us on Discord

YData Synthetic

YData-Synthetic is an open-source package developed in 2020 with the primary goal of educating users about generative models for synthetic data generation. Designed as a collection of models, it was intended for exploratory studies and educational purposes. However, it was not optimized for the quality, performance, and scalability needs typically required by organizations.

!!! note "Update" Even though the journey was fun, and we have learned a lot from the community it is now time to upgrade ydata-synthetic. Heading towards the future of synthetic data generation we recommend users to transition to ydata-sdk, which provides a superior experience with enhanced performance, precision, and ease of use, making it the preferred tool for synthetic data generation and a perfect introduction to Generative AI.

Synthetic data

What is synthetic data?

Synthetic data is artificially generated data that is not collected from real world events. It replicates the statistical components of real data without containing any identifiable information, ensuring individuals' privacy.

Why Synthetic Data?

Synthetic data can be used for many applications:

  • Privacy compliance for data-sharing and Machine Learning development
  • Remove bias
  • Balance datasets
  • Augment datasets

Looking for an end-to-end solution to Synthetic Data Generation?
YData Fabric enables the generation of high-quality datasets within a full UI experience, from data preparation to synthetic data generation and evaluation.
Check out the Community Version.

ydata-synthetic to ydata-sdk

With the upcoming update of ydata-syntheticto ydata-sdk, users will now have access to a single API that automatically selects and optimizes the best generative model for their data. This streamlined approach eliminates the need to choose between various models manually, as the API intelligently identifies the optimal model based on the specific dataset and use case.

Instead of having to manually select from models such as:

  • GAN
  • CGAN (Conditional GAN)
  • WGAN (Wasserstein GAN)
  • WGAN-GP (Wassertein GAN with Gradient Penalty)
  • DRAGAN (Deep Regret Analytic GAN)
  • Cramer GAN (Cramer Distance Solution to Biased Wasserstein Gradients)
  • CWGAN-GP (Conditional Wassertein GAN with Gradient Penalty)
  • CTGAN (Conditional Tabular GAN)
  • TimeGAN (specifically for time-series data)
  • DoppelGANger (specifically for time-series data)

The new API handles model selection automatically, optimizing for the best performance in fidelity, utility, and privacy. This significantly simplifies the synthetic data generation process, ensuring that users get the highest quality output without the need for manual intervention and tiring hyperparameter tuning.

Are you ready to learn more about synthetic data and the best-practices for synthetic data generation? For more materials on synthetic data generation with Python see the documentation.

Quickstart

Binary installers for the latest released version are available at the Python Package Index (PyPI).

pip install ydata-sdk

The UI guide for synthetic data generation

YData Fabric offers an UI interface to guide you through the steps and inputs to generate structure data. You can experiment today with YData Fabric by registering the Community version.

Examples

Here you can find usage examples of the package and models to synthesize tabular data.

Datasets for you to experiment

Here are some example datasets for you to try with the synthesizers:

Tabular datasets

Sequential datasets

Project Resources

Find below useful literature of how to generate synthetic data and available generative models:

Tabular data

Sequential data

Support

For support in using this library, please join our Discord server. Our Discord community is very friendly and great about quickly answering questions about the use and development of the library. Click here to join our Discord community!

FAQs

Have a question? Check out the Frequently Asked Questions about ydata-synthetic. If you feel something is missing, feel free to book a beary informal chat with us.

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ydata-synthetic-2.0.0.tar.gz (12.4 kB view details)

Uploaded Source

Built Distribution

ydata_synthetic-2.0.0-py2.py3-none-any.whl (15.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file ydata-synthetic-2.0.0.tar.gz.

File metadata

  • Download URL: ydata-synthetic-2.0.0.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for ydata-synthetic-2.0.0.tar.gz
Algorithm Hash digest
SHA256 b5bf6d4a92a56b673c3083955637162b7b747a1a25ad509a39f898751b52d514
MD5 920d1fb2c86f43c15855ca48687032b7
BLAKE2b-256 286e74754a8203e914a4db0bbf4201aaa66f24d4942f1edbb8af7f5bdaa09347

See more details on using hashes here.

File details

Details for the file ydata_synthetic-2.0.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for ydata_synthetic-2.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c7eb0c91f25e429d9d5552845786091ae5e5dcf988eadb1fcace82ff6648e88c
MD5 b637e02e055db76319e5f6dac5d998c2
BLAKE2b-256 d91d07be73fd37b91e8c285ee037b561d2e03963c3c57861ab4ce01d28ee2be5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page