Skip to main content

yet (another spark) etl framework

Project description

yetl

Website: https://www.yetl.io/

Introduction

Install

pip install yetl-framework

Configuration framework for databricks pipelines. Define configuration and table dependencies in yaml config then get the table mappings config model:

Define your tables.

version: 1.3.0

audit_control:
  delta_lake:
    raw_dbx_patterns_control:
      header_footer:
        sql: ../sql/{{database}}/{{table}}.sql
        depends_on:
          - raw.raw_dbx_patterns.*
      raw_audit:
        sql: ../sql/{{database}}/{{table}}.sql
        depends_on:
          - raw.raw_dbx_patterns.*
          - audit_control.raw_dbx_patterns_control.header_footer

landing:
  read:
    landing_dbx_patterns:
      customer_details_1: null
      customer_details_2: null

raw:
  delta_lake:
    raw_dbx_patterns:
      customers:
        ids: id
        depends_on:
          - landing.landing_dbx_patterns.customer_details_1
          - landing.landing_dbx_patterns.customer_details_2
        warning_thresholds:
          invalid_ratio: 0.1
          invalid_rows: 0
          max_rows: 100
          min_rows: 5
        exception_thresholds:
          invalid_ratio: 0.2
          invalid_rows: 2
          max_rows: 1000
          min_rows: 0
        custom_properties:
          process_group: 1

Define you load configuration:

version: 1.3.0
tables: ./tables.yaml

audit_control:
  delta_lake:
    # delta table properties can be set at stage level or table level
    delta_properties:
        delta.appendOnly: true
        delta.autoOptimize.autoCompact: true
        delta.autoOptimize.optimizeWrite: true
    managed: false
    container: datalake
    location: /mnt/{{container}}/data/raw
    checkpoint_location: "/mnt/{{container}}/checkpoint/{{checkpoint}}"
    path: "{{database}}/{{table}}"
    options:
      checkpointLocation: default

landing:
  read:
    trigger: customerdetailscomplete-{{filename_date_format}}*.flg
    trigger_type: file
    container: datalake
    location: "/mnt/{{container}}/data/landing/dbx_patterns/{{table}}/{{path_date_format}}"
    filename: "{{table}}-{{filename_date_format}}*.csv"
    filename_date_format: "%Y%m%d"
    path_date_format: "%Y%m%d"
    format: cloudFiles
    spark_schema: ../schema/{{table.lower()}}.yaml
    options:
      # autoloader
      cloudFiles.format: csv
      cloudFiles.schemaLocation:  /mnt/{{container}}/checkpoint/{{checkpoint}}
      cloudFiles.useIncrementalListing: auto
      # schema
      inferSchema: false
      enforceSchema: true
      columnNameOfCorruptRecord: _corrupt_record
      # csv
      header: false
      mode: PERMISSIVE
      encoding: windows-1252
      delimiter: ","
      escape: '"'
      nullValue: ""
      quote: '"'
      emptyValue: ""
    
raw:
  delta_lake:
    # delta table properties can be set at stage level or table level
    delta_properties:
      delta.appendOnly: true
      delta.autoOptimize.autoCompact: true    
      delta.autoOptimize.optimizeWrite: true  
      delta.enableChangeDataFeed: false
    managed: false
    container: datalake
    location: /mnt/{{container}}/data/raw
    path: "{{database}}/{{table}}"
    checkpoint_location: "/mnt/{{container}}/checkpoint/{{checkpoint}}"
    options:
      mergeSchema: true

base:
  delta_lake:
    container: datalake
    location: /mnt/{{container}}/data/base
    path: "{{database}}/{{table}}"
    options: null

Import the config objects into you pipeline:

from yetl import Config, StageType

pipeline = "auto_load_schema"
project = "test_project"
config = Config(
    project=project, pipeline=pipeline
)
table_mapping = config.get_table_mapping(
    stage=StageType.raw, table="customers"
)

print(table_mapping)

Use even less code and use the decorator pattern:

@yetl_flow(
        project="test_project", 
        stage=StageType.raw
)
def auto_load_schema(table_mapping:TableMapping):

    # << ADD YOUR PIPELINE LOGIC HERE - USING TABLE MAPPING CONFIG >>
    return table_mapping # return whatever you want here.


result = auto_load_schema(table="customers")

Development Setup

pip install -r requirements.txt

Unit Tests

To run the unit tests with a coverage report.

pip install -e .
pytest test/unit --junitxml=junit/test-results.xml --cov=yetl --cov-report=xml --cov-report=html

Integration Tests

To run the integration tests with a coverage report.

pip install -e .
pytest test/integration --junitxml=junit/test-results.xml --cov=yetl --cov-report=xml --cov-report=html

Build

python setup.py sdist bdist_wheel

Publish

twine upload dist/*

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

yetl-framework-1.4.14.tar.gz (24.8 kB view hashes)

Uploaded Source

Built Distribution

yetl_framework-1.4.14-py3-none-any.whl (32.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page