Skip to main content

A face detection library based on libfacedetection

Project description

Yuface

PyPI License

Introduction

A super fast face detector packaged by the libfacedetection repository using pybind11.

Change Log

[2023-5-8] Project init.

Quick start

pip install yuface

Usage

  1. Load image
# opencv
import cv2
img = cv2.imread('xxx.jpg')

# PIL
import PIL
import numpy as np
img = PIL.Image.open('xxx.jpg').convert('RGB')
img = np.array(img)                             # convert to numpy array
img = img[:, :, ::-1]                           # convert to BGR

# imageio
import imageio as io
img = io.imread('xxx.jpg')
img = img[:, :, ::-1]                           # convert to BGR
  1. Detect
# img: numpy.ndarray, shape=(H, W, 3), dtype=uint8, BGR
# conf_thresh: float, confidence threshold, default=0.5, range=[0.0, 0.1]
from yuface import detect
confs, bboxes, landmarks = detect(img, conf_thresh=0.5)
  1. Deal result
# confs: numpy.ndarray, shape=(N,), dtype=uint16, confidence 
# bboxes: numpy.ndarray, shape=(N, 4), dtype=uint16, bounding box (XYWH)
# landmarks: numpy.ndarray, shape=(N, 10), dtype=uint16, landmarks (XYXYXYXYXY)
import cv2
for conf, bbox, landmark in zip(confs, bboxes, landmarks):
    cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[0] + bbox[2], bbox[1] + bbox[3]), (0, 255, 0), 1)
    cv2.putText(img, str(conf), (bbox[0], bbox[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1)
    for i in range(5):
        cv2.circle(img, (landmark[2*i], landmark[2*i+1]), 2, (0, 255, 0), 1)
cv2.imwrite('result.jpg', img)

result

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

yuface-2023.5.1-cp311-cp311-win_amd64.whl (230.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

yuface-2023.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (474.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

yuface-2023.5.1-cp310-cp310-win_amd64.whl (230.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

yuface-2023.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (474.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

yuface-2023.5.1-cp39-cp39-win_amd64.whl (230.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

yuface-2023.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (474.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

yuface-2023.5.1-cp38-cp38-win_amd64.whl (230.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

yuface-2023.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (474.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

yuface-2023.5.1-cp37-cp37m-win_amd64.whl (230.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

yuface-2023.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (475.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

yuface-2023.5.1-cp36-cp36m-win_amd64.whl (231.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

yuface-2023.5.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (475.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file yuface-2023.5.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for yuface-2023.5.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a46fcfdf2dba05d20389a6ebd7e6ec8ad471da156223cec2949622b70b0f1f9d
MD5 2ea78a4d1a4f4aa5e1a98a4d9831825b
BLAKE2b-256 434de3320959754001daf5b5d9e21a68f3319fc3852004947d84512ed596f7af

See more details on using hashes here.

File details

Details for the file yuface-2023.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for yuface-2023.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd03270a672da75b89809a2c999d5728ef19c6e701408a4d0bc9c00480c864a0
MD5 4e9d7d98346300ebac668c3ab30e41df
BLAKE2b-256 7034960d8baff630be8edb74a9708acb73e892ae414fd70cc36aeb67b7a57ca1

See more details on using hashes here.

File details

Details for the file yuface-2023.5.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for yuface-2023.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 82a906517729933f94d1fb18e249c37662f16ffd14430debb7690d18815e4edc
MD5 955fd97ca37f7f241c67a89bdff9f77b
BLAKE2b-256 7a5f9dc7e1f97b3b0f712a6e84d44f1f7aa6d47dcc20ae9dea206965558347b1

See more details on using hashes here.

File details

Details for the file yuface-2023.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for yuface-2023.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a07a54b386220fbf7c56bb15c5e1a03c359c93d07c1a6d247cb788d340ed5b50
MD5 9ee0325bad13c4aa6cf094bc73fbf681
BLAKE2b-256 e00279fd375411290d9ce901feadaeff74b842b38808108c4f78efb57f2029ca

See more details on using hashes here.

File details

Details for the file yuface-2023.5.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: yuface-2023.5.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 230.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for yuface-2023.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3574fcc9f01d3098031e717a17f5f0782f3146b32c0cd1cd1f5ee32c27c713ce
MD5 3ec5ee3cbd61521e3753e239ec5155c6
BLAKE2b-256 71b42139283abb875a69e3104a6246a7a44092b25196972d911fe7ad41f1bd1f

See more details on using hashes here.

File details

Details for the file yuface-2023.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for yuface-2023.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2e1f30ccb2c9696a3708f6ce95491f13ab06a1da9cff80911aaade94769180f4
MD5 8226d630b292a5fe9a163770fd40d8d0
BLAKE2b-256 92db6b5f65a730502035eb0ee5b220f1518dd1a18f1aa71acac5d2960a93e479

See more details on using hashes here.

File details

Details for the file yuface-2023.5.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: yuface-2023.5.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 230.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for yuface-2023.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 688f14486a432d023c18b5f197771ad0fa34c53e8f08d8cc57e06bb6cba32e0f
MD5 2a00be8f9310b0dcc703b8487c18c42f
BLAKE2b-256 8509bbc2cd1ffb807e052a8da0b007358194694d4cf7120e3011afe7c8bdd99c

See more details on using hashes here.

File details

Details for the file yuface-2023.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for yuface-2023.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d27addd55cf5077e7470fe344880803098cb434450264ad5f47ce9709464d92
MD5 841268ebb8459834180e09d2454837a9
BLAKE2b-256 136c5fa79874439d6df7e0d3b9634e1477c6098bed3269118cd8e82c2060afce

See more details on using hashes here.

File details

Details for the file yuface-2023.5.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: yuface-2023.5.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 230.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for yuface-2023.5.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c5e5de9802a6726c8f93be7778958d4ae1e2c107af83990e8228eb829f9971d9
MD5 d3cdbcdc02f128f8bdace7d7deef2d12
BLAKE2b-256 bfd9b7f6d5f8f6db67026a39354999a8371cf69553762307d3c36f489c812c77

See more details on using hashes here.

File details

Details for the file yuface-2023.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for yuface-2023.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 078a1b1344dc247004b4438185ac6c5de363ff8609dda280ce2ccf082c567d24
MD5 7042504ccf52edca4265876ba5a346d6
BLAKE2b-256 f93609e673f92422ce4936f84d098eaa26d0c1633349328d56aa0e8e77d14ea9

See more details on using hashes here.

File details

Details for the file yuface-2023.5.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: yuface-2023.5.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 231.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for yuface-2023.5.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d56eee26007485f523ca74dba58f7984e1daa23981f7338f04d05eefa87424dc
MD5 68e5f3f1c4d01942a4318e04d5f580ea
BLAKE2b-256 3b20df4f1bf47d0857eb20106f5dd25b84ab34f7157f3da94b515bca6a12761a

See more details on using hashes here.

File details

Details for the file yuface-2023.5.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for yuface-2023.5.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8b0c021988d04876848454fdf2767a6d3d5c1d24b30c1b92176b5ccfcb91895
MD5 b4756ac1cd05f67e1329d7d547a2f1f1
BLAKE2b-256 c9cad990419c8365fe45f95abf97875f1dae9ad89f6fb6cfc9b80b5c479bed7c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page