Make sense of it all.
Project description
Zillion: Make sense of it all
Introduction
Zillion
is a free, open data warehousing and dimensional modeling tool that
allows combining and analyzing data from multiple datasources through a simple
API. It writes SQL so you don't have to, and it easily bolts onto existing
database infrastructure via SQLAlchemy.
With Zillion
you can:
- Define a warehouse that contains a variety of SQL and/or file-like datasources
- Define or reflect metrics, dimensions, and relationships in your data
- Run multi-datasource reports and combine the results in a DataFrame
- Flexibly aggregate your data with multi-level rollups and table pivots
- Customize or combine fields with formulas
- Apply technical transformations including rolling, cumulative, and rank statistics
- Apply automatic type conversions - i.e. get a "year" dimension for free from a "date" column
- Save and share report specifications
- Utilize ad hoc or public datasources, tables, and fields to enrich reports
Table of Contents
- Installation
- Primer
- Example - Sales Analytics
- Advanced Topics
- Supported DataSources
- Docs
- How to Contribute
Installation
⚠️ Warning: This project is in an alpha state and is rapidly changing.
$ pip install zillion
Primer
The following is meant to give a quick overview of some theory and
nomenclature used in data warehousing with Zillion
. Skip below for a
quickstart example.
In short: Zillion
writes SQL for you and makes data accessible through a very
simple API:
result = warehouse.execute(
metrics=["revenue", "leads"],
dimensions=["date"],
criteria=[
("date", ">", "2020-01-01"),
("partner", "=", "Partner A")
]
)
Metrics and Dimensions
In Zillion
there are two main types of Fields
that will be used in
your report requests:
Dimensions
: attributes of data used for labelling, grouping, and filteringMetrics
: facts and measures that may be broken down along dimensions
A Field
encapsulates the concept of a column in your data. For example, you
may have a Field
called "revenue". That Field
may occur across several
datasources or possibly in multiple tables within a single
datasource. Zillion
understands that all of those columns represent the same
concept, and it can try to use any of them to satisfy reports requesting
"revenue".
Likewise there are two main types of tables used to structure your warehouse:
Dimension Tables
: reference/attribute tables containing only related dimensionsMetric Tables
: fact tables that may contain metrics and some related dimensions/attributes
Dimension tables are often static or slowly growing in terms of row count and contain attributes tied to a primary key. Some common examples would be lists of US Zip Codes or company/partner directories.
Metric tables are generally more transactional in nature. Some common examples would be records for web requests, ecommerce sales, or stock market price history.
Warehouse Theory
If you really want to go deep on dimensional modeling and the drill-across
querying technique Zillion
employs, I recommend reading Ralph Kimball's
book
on data warehousing.
To summarize, drill-across
querying
forms one or more queries to satisfy a report request for metrics
that may
exist across multiple datasources and/or tables at a particular dimension
grain.
Zillion
technically supports
snowflake or
star schemas, though it isn't
picky about it. You can specify table relationships through a parent-child
lineage, and Zillion
can also infer acceptable joins based on the presence
of dimension table primary keys.
Query Layers
Zillion
reports can be thought of as running in two layers:
DataSource Layer
: SQL queries against the warehouse's datasourcesCombined Layer
: A final SQL query against the combined data from the DataSource Layer
The Combined Layer is just another SQL database (in-memory SQLite by default) that is used to tie the datasource data together and apply a few additional features such as rollups, row filters, row limits, sorting, pivots, and technical computations.
Executing Reports
The main purpose of Zillion
is to execute reports against a Warehouse
.
You'll see how to initialize a Warehouse
in a bit, but at a high level
you will be crafting reports as follows:
result = warehouse.execute(
metrics=["revenue", "leads"],
dimensions=["date"],
criteria=[
("date", ">", "2020-01-01"),
("partner", "=", "Partner A")
]
)
print(result.df) # Pandas DataFrame
When comparing to writing SQL, it's helpful to think of the dimensions as the target columns of a group by SQL statement. Think of the metrics as the columns you are aggregating. Think of the criteria as the where clause. Your criteria are applied in the DataSource Layer SQL queries.
The ReportResult
has a Pandas DataFrame with the dimensions as the index and
the metrics as the columns.
A Report
is said to have a grain
, which defines the dimensions each metric
must be able to join to in order to satisfy the Report
requirements. The
grain
is a combination of all dimensions, including those referenced in
criteria or in metric formulas. In the example above, the grain
would be
{date, partner}
. Both "revenue" and "leads" must be able to join to those
dimensions for this report to be possible.
These concepts can take time to sink in and obviously vary with the specifics of your data model, but you will become more familiar with them as you start putting together reports against your data warehouses.
Example - Sales Analytics
Below we will walk through a simple hypothetical sales data model that
demonstrates basic DataSource
and Warehouse
configuration and then shows
some sample reports. The data is a simple SQLite database
that is part of the Zillion
test code. For reference, the schema is as
follows:
CREATE TABLE partners (
id INTEGER PRIMARY KEY,
name VARCHAR NOT NULL UNIQUE,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
CREATE TABLE campaigns (
id INTEGER PRIMARY KEY,
name VARCHAR NOT NULL UNIQUE,
category VARCHAR NOT NULL,
partner_id INTEGER NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
CREATE TABLE leads (
id INTEGER PRIMARY KEY,
name VARCHAR NOT NULL,
campaign_id INTEGER NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
CREATE TABLE sales (
id INTEGER PRIMARY KEY,
item VARCHAR NOT NULL,
quantity INTEGER NOT NULL,
revenue DECIMAL(10, 2),
lead_id INTEGER NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
Warehouse Creation
A Warehouse
may be created from an existing SQLAlchemy MetaData instance,
purely from a JSON configuration, or a combination of the two. The code below
shows how it can be done in as little as one line of code if you have a pointer
to a JSON Warehouse
config.
Note: Defining your config in JSON is recommended, so we'll save an example of defining
Zillion
metadata directly on your SQLAlchemy objects for another time.
from zillion import Warehouse
wh = Warehouse(config="https://raw.githubusercontent.com/totalhack/zillion/master/examples/example_wh_config.json")
This example config uses a data_url
in its DataSource
connect
info that
tells Zillion
to dynamically download that data and connect to it as a
SQLite database. This is useful for quick examples or analysis, though in most
scenarios you would put a connection string to an existing database like you
see
here
The basics of Zillion's
configuration structure are as follows:
A Warehouse
config has the following main sections:
metrics
: optional list of metric configs for global metricsdimensions
: optional list of dimension configs for global dimensionsdatasources
: mapping of datasource names to datasource configs or config URLs
A DataSource
config has the following main sections:
connect
: database connection url or dict of connect paramsmetrics
: optional list of metric configs specific to this datasourcedimensions
: optional list of dimension configs specific to this datasourcetables
: mapping of table names to table configs or config URLs
Tip: datasource and table configs may also be replaced with a URL that points to a local or remote config file.
In this example all four tables in our database are included in the config,
two as dimension tables and two as metric tables. The tables are linked
through a parent->child relationship: partners to campaigns, and leads to
sales. Some tables also utilize the create_fields
flag to automatically
create Fields
on the datasource from column definitions. Other metrics and
dimensions are defined explicitly.
To view the structure of this Warehouse
after init you can use the print_info
method which shows all metrics, dimensions, tables, and columns that are part
of your data warehouse:
wh.print_info() # Formatted print of the Warehouse structure
For a deeper dive of the config schema please see the full docs.
Reports
Example: Get sales, leads, and revenue by partner:
result = wh.execute(
metrics=["sales", "leads", "revenue"],
dimensions=["partner_name"]
)
print(result.df)
"""
sales leads revenue
partner_name
Partner A 11 4 165.0
Partner B 2 2 19.0
Partner C 5 1 118.5
"""
Example: Let's limit to Partner A and break down by its campaigns:
result = wh.execute(
metrics=["sales", "leads", "revenue"],
dimensions=["campaign_name"],
criteria=[("partner_name", "=", "Partner A")]
)
print(result.df)
"""
sales leads revenue
campaign_name
Campaign 1A 5 2 83
Campaign 2A 6 2 82
"""
Example: The output below shows rollups at the campaign level within each partner, and also a rollup of totals at the partner and campaign level.
Note: the output contains a special character to mark DataFrame rollup rows that were added to the result. The ReportResult object contains some helper attributes to automatically access or filter rollups, as well as a
df_display
attribute that returns the result with friendlier display values substituted for special characters. The under-the-hood special character is left here for illustration, but may not render the same in all scenarios.
from zillion import RollupTypes
result = wh.execute(
metrics=["sales", "leads", "revenue"],
dimensions=["partner_name", "campaign_name"],
rollup=RollupTypes.ALL
)
print(result.df)
"""
sales leads revenue
partner_name campaign_name
Partner A Campaign 1A 5.0 2.0 83.0
Campaign 2A 6.0 2.0 82.0
11.0 4.0 165.0
Partner B Campaign 1B 1.0 1.0 6.0
Campaign 2B 1.0 1.0 13.0
2.0 2.0 19.0
Partner C Campaign 1C 5.0 1.0 118.5
5.0 1.0 118.5
18.0 7.0 302.5
"""
See the Report
docs for more
information on supported rollup behavior.
Example: Save a report spec (not the data):
spec_id = wh.save_report(
metrics=["sales", "leads", "revenue"],
dimensions=["partner_name"]
)
Example: Load and run a report from a spec ID:
result = wh.execute_id(spec_id)
Note: The ZILLION_CONFIG environment var can point to a yaml config file. The database used to store Zillion report specs can be configured by setting the ZILLION_DB_URL value in your Zillion config to a valid database connection string. By default a SQLite DB in /tmp is used. See this sample config.
Example: Unsupported Grain
If you attempt an impossible report, you will get an
UnsupportedGrainException
. The report below is impossible because it
attempts to break down the leads metric by a dimension that only exists
in a child table. Generally speaking, child tables can join back up to
parents to find dimensions, but not the other way around.
# Fails with UnsupportedGrainException
result = wh.execute(
metrics=["leads"],
dimensions=["sale_id"]
)
Advanced Topics
Formula Metrics
In our example above our config included a formula-based metric called "rpl",
which is simply revenue / leads
. A FormulaMetric
combines other metrics
and/or dimensions to calculate a new metric at the Combined Layer of
querying. The syntax must match your Combined Layer database, which is SQLite
in our example.
{
"name": "rpl",
"aggregation": "mean",
"rounding": 2,
"formula": "{revenue}/{leads}"
}
DataSource Formulas
Our example also includes a metric "sales" whose value is calculated via
formula at the DataSource Layer of querying. Note the following in the
fields
list for the "id" param in the "main.sales" table. These formulas are
in the syntax of the particular DataSource
database technology, which also
happens to be SQLite in our example.
"fields": [
"sale_id",
{"name":"sales", "ds_formula": "COUNT(DISTINCT sales.id)"}
]
Type Conversions
Our example also automatically created a handful of dimensions from the
"created_at" columns of the leads and sales tables. Support for type
conversions is limited, but for date/datetime columns in supported
DataSource
technologies you can get a variety of dimensions for free this
way.
The output of wh.print_info
will show the added dimensions, which are
prefixed with "lead_" or "sale_" as specified by the optional
type_conversion_prefix
in the config for each table. Some examples of
auto-generated dimensions include sale_hour, sale_day_name, sale_day_of_month,
sale_month, sale_year, etc. To prevent type conversions, set
skip_conversion_fields
to true
on your DataSource
config.
See zillion.field.TYPE_ALLOWED_CONVERSIONS
for more details on currently
supported conversions.
Config Variables
If you'd like to avoid putting sensitive connection information directly in
your DataSource
configs you can leverage config variables. In your Zillion
yaml config you can specify a DATASOURCE_CONTEXTS
section as follows:
DATASOURCE_CONTEXTS:
my_ds_name:
user: user123
pass: goodpassword
host: 127.0.0.1
schema: reporting
Then when your DataSource
config for the datasource named "my_ds_name" is
read, it can use this context to populate variables in your connection url:
"datasources": {
"my_ds_name": {
"connect": "mysql+pymysql://{user}:{pass}@{host}/{schema}"
...
}
}
DataSource Priority
On Warehouse
init you can specify a default priority order for datasources
by name. This will come into play when a report could be satisfied by multiple
datasources. DataSources
earlier in the list will be higher priority. This
would be useful if you wanted to favor a set of faster, aggregate tables that
are grouped in a DataSource
.
wh = Warehouse(config=config, ds_priority=["aggr_ds", "raw_ds", ...])
Ad Hoc Metrics
You may also define metrics "ad hoc" with each report request. Below is an example that creates a revenue-per-lead metric on the fly. These only exist within the scope of the report, and the name can not conflict with any existing fields:
result = wh.execute(
metrics=[
"leads",
{"formula": "{revenue}/{leads}", "name": "my_rpl"}
],
dimensions=["partner_name"]
)
Ad Hoc Tables
Zillion
also supports creation or syncing of ad hoc tables in your database
during DataSource
or Warehouse
init. An example of a table config that
does this is shown
here.
It uses the table config's data_url
and if_exists
params to control the
syncing and/or creation of the "main.dma_zip" table from a remote CSV in a
SQLite database. The same can be done in other database types too.
The potential performance drawbacks to such an approach should be obvious, particularly if you are initializing your warehouse often or if the remote data file is large. It is often better to sync and create your data ahead of time so you have complete schema control, but this method can be very useful in certain scenarios.
⚠️ Warning: be careful not to overwrite existing tables in your database!
Technicals
There are a variety of technical computations that can be applied to metrics to compute rolling, cumulative, or rank statistics. For example, to compute a 5-point moving average on revenue one might define a new metric as follows:
{
"name": "revenue_ma_5",
"type": "numeric(10,2)",
"aggregation": "sum",
"rounding": 2,
"technical": "mean(5)"
}
Technical computations are computed at the Combined Layer, whereas the "aggregation" is done at the DataSource Layer (hence needing to define both above).
For more info on how shorthand technical strings are parsed, see the
parse_technical_string
code. For a full list of supported technical types see
zillion.core.TechnicalTypes
.
Technicals also support two modes: "group" and "all". The mode controls how to apply the technical computation across the data's dimensions. In "group" mode, it computes the technical across the last dimension, whereas in "all" mode in computes the technical across all data without any regard for dimensions.
The point of this becomes more clear if you try to do a "cumsum" technical across data broken down by something like ["partner_name", "date"]. If "group" mode is used (the default in most cases) it will do cumulative sums within each partner over the date ranges. If "all" mode is used, it will do a cumulative sum across every data row. You can be explicit about the mode by appending it to the technical string: i.e. "cumsum:all" or "mean(5):group"
Supported DataSources
Zillion's
goal is to support any database technology that SQLAlchemy
supports. That said the support and testing levels in Zillion
vary at the
moment. In particular, the ability to do type conversions, database
reflection, and kill running queries all require some database-specific code
for support. The following list summarizes known support levels. Your mileage
may vary with untested database technologies that SQLAlchemy supports (it
might work just fine, just hasn't been tested yet). Please report bugs and
help add more support!
- SQLite: supported and tested
- MySQL: supported and tested
- PostgreSQL: supported and lightly tested
- MSSQL: not tested
- Oracle: not tested
- BigQuery, Redshift, Snowflake, etc: not tested
Note that this is different than the database support for the Combined Layer database. Currently only SQLite is supported there, though it is planned to make this more generic such that any SQLAlchemy supported database could be used.
Documentation
More thorough documentation can be found here. You can supplement your knowledge by perusing the tests directory or the API reference.
How to Contribute
Adding support and tests for additional database technologies would be a great help. Please See the contributing guide for more information.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file zillion-0.3.6.tar.gz
.
File metadata
- Download URL: zillion-0.3.6.tar.gz
- Upload date:
- Size: 76.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | efc6bd448f37d06d8dfda0ebece45a0ead5ebc99936c736493c2a9808a92dcbc |
|
MD5 | 485c93b81ba2c5ffea1310297c038cd9 |
|
BLAKE2b-256 | 2a40f520026e840e15cef486de0cbd221e18aa8eb570819619a95609d74fab57 |
File details
Details for the file zillion-0.3.6-py3-none-any.whl
.
File metadata
- Download URL: zillion-0.3.6-py3-none-any.whl
- Upload date:
- Size: 71.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fff4b70ddae7d7f771abe73227208e60b5eda1182249828e69df19c4e84aa9a8 |
|
MD5 | 42fbe68a4d375da8b1576dcdcf2cf162 |
|
BLAKE2b-256 | e80041a48aa0109d0ff1dd62bdf2493474fe3730eeaa04de11c641f68b900e1c |