Skip to main content

Building applications with LLMs through composability

Project description

🦜️🔗 LangChain

⚡ Building applications with LLMs through composability ⚡

Release Notes lint test Downloads License: MIT Twitter Open in Dev Containers Open in GitHub Codespaces GitHub star chart Dependency Status Open Issues

Looking for the JS/TS version? Check out LangChain.js.

To help you ship LangChain apps to production faster, check out LangSmith. LangSmith is a unified developer platform for building, testing, and monitoring LLM applications. Fill out this form to speak with our sales team.

Quick Install

pip install langchain or pip install langsmith && conda install langchain -c conda-forge

🤔 What is this?

Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.

This library aims to assist in the development of those types of applications. Common examples of these applications include:

❓ Question answering with RAG

🧱 Extracting structured output

🤖 Chatbots

📖 Documentation

Please see here for full documentation on:

  • Getting started (installation, setting up the environment, simple examples)
  • How-To examples (demos, integrations, helper functions)
  • Reference (full API docs)
  • Resources (high-level explanation of core concepts)

🚀 What can this help with?

There are five main areas that LangChain is designed to help with. These are, in increasing order of complexity:

📃 Models and Prompts:

This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with chat models and LLMs.

🔗 Chains:

Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.

📚 Retrieval Augmented Generation:

Retrieval Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.

🤖 Agents:

Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.

🧐 Evaluation:

[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.

For more information on these concepts, please see our full documentation.

💁 Contributing

As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

For detailed information on how to contribute, see the Contributing Guide.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain-0.3.24.tar.gz (10.2 MB view details)

Uploaded Source

Built Distribution

langchain-0.3.24-py3-none-any.whl (1.0 MB view details)

Uploaded Python 3

File details

Details for the file langchain-0.3.24.tar.gz.

File metadata

  • Download URL: langchain-0.3.24.tar.gz
  • Upload date:
  • Size: 10.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for langchain-0.3.24.tar.gz
Algorithm Hash digest
SHA256 caf1bacdabbea429bc79b58b118c06c3386107d92812e15922072b91745f070f
MD5 36d235f80085b262a38feb7b3df3d49f
BLAKE2b-256 a38fdb961066a65e678036886c73234827c56547fed2e06fd1b425767e4dc059

See more details on using hashes here.

File details

Details for the file langchain-0.3.24-py3-none-any.whl.

File metadata

  • Download URL: langchain-0.3.24-py3-none-any.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for langchain-0.3.24-py3-none-any.whl
Algorithm Hash digest
SHA256 596c5444716644ddd0cd819fb2bc9d0fd4221503b219fdfb5016edcfaa7da8ef
MD5 7a3cd94f919547fa3a9e90b9cbe05be3
BLAKE2b-256 ba8377392f0a6a560e471075b125656b392d3b889be65ee8e93a5c31aa7a62bb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page