Skip to main content

A finite element Python implementation

Project description

Build status Docs

FEM

N dimensional FEM implementation for M variables per node problems.

Tutorial

Using pre implemented equations

Avaliable equations:

  • 1D 1 Variable ordinary diferential equation
  • 1D 2 Variable Euler Bernoulli Beams [TODO]
  • 1D 2 Variable Timoshenko Beams [TODO]
  • 2D 1 Variable Torsion
  • 2D 2 Variable Plane Strees
  • 2D 2 Variable Plane Strain

Steps:

  • Create geometry (From coordinates or GiD)
  • Create Border Conditions (Point and segment supported)
  • Solve!
  • For example: Test 2, Test 5, Test 11-14

Example without geometry file (Test 2):

import matplotlib.pyplot as plt #Import libraries
import FEM #import AFEM
from FEM import Mesh #Import Meshing tools

#Define some variables with geometric properties
a = 0.3
b = 0.3
tw = 0.05
tf = 0.05

#Define material constants
E = 200000
v = 0.27
G = E / (2 * (1 + v))
phi = 1 #Rotation angle

#Define domain coordinates
vertices = [
    [0, 0],
    [a, 0],
    [a, tf],
    [a / 2 + tw / 2, tf],
    [a / 2 + tw / 2, tf + b],
    [a, tf + b],
    [a, 2 * tf + b],
    [0, 2 * tf + b],
    [0, tf + b],
    [a / 2 - tw / 2, tf + b],
    [a / 2 - tw / 2, tf],
    [0, tf],
]

#Define triangulation parameters with `_strdelaunay` method.
params = Mesh.Delaunay._strdelaunay(constrained=True, delaunay=True,
                                    a='0.00003', o=2)
#**Create** geometry using triangulation parameters. Geometry can be imported from .msh files.
geometry = Mesh.Delaunay1V(vertices, params)

#Save geometry to .msh file
geometry.saveMesh('I_test')

#Create torsional 2D analysis.
O = FEM.Torsion2D(geometry, G, phi)
#Solve the equation in domain.
#Post process and show results
O.solve()
plt.show()

Example with geometry file (Test 2):

import matplotlib.pyplot as plt #Import libraries
import FEM #import AFEM
from FEM import Mesh #Import Meshing tools

#Define material constants.
E = 200000
v = 0.27
G = E / (2 * (1 + v))
phi = 1 #Rotation angle

#Load geometry with file.
geometry = Mesh.Geometry.loadmsh('I_test.msh')

#Create torsional 2D analysis.
O = FEM.Torsion2D(geometry, G, phi)
#Solve the equation in domain.
#Post process and show results
O.solve()
plt.show()

Creating equation classes

Note: Don't forget the docstring!

Steps

  1. Create a Python flie and import the libraries:

    from .Core import *
    from tqdm import tqdm
    import numpy as np
    import matplotlib.pyplot as plt
    
    • Core: Solver
    • Core: Numpy data
    • Core: Matplotlib graphs
    • Tqdm: Progressbars
  2. Create a Python class with Core inheritance

    class PlaneStress(Core):
    	def __init__(self,geometry,*args,**kargs):
    	#Do stuff
    	Core.__init__(self,geometry)
    

    It is important to manage the number of variables per node in the input geometry.

  3. Define the matrix calculation methods and post porcessing methods

    def elementMatrices(self):
    def postProcess(self):
    
  4. The elementMatrices method uses gauss integration points, so you must use the following structure:

    for e in tqdm(self.elements,unit='Element'):
    	_x,_p = e.T(e.Z.T) #Gauss points in global coordinates and Shape functions evaluated in gauss points
    	jac,dpz = e.J(e.Z.T) #Jacobian evaluated in gauss points and shape functions derivatives in natural coordinates
    	detjac = np.linalg.det(jac)
    	_j = np.linalg.inv(jac) #Jacobian inverse
    	dpx = _j @ dpz #Shape function derivatives in global coordinates
    	for k in range(len(e.Z)): #Iterate over gauss points on domain
    		#Calculate matrices with any finite element model
    	#Assign matrices to element
    

    A good example is the PlaneStress class

Roadmap

  1. Beam bending by Euler Bernoulli and Timoshenko equations
  2. 2D elastic plate theory
  3. 1D and 2D heat transfer
  4. Geometry class modification for hierarchy with 1D, 2D and 3D geometry child classes
  5. Transient analysis (Core modification)
  6. Elasticity in 3D (3D meshing and post process)
  7. Non Lineal analysis for 1D equation (All cases)
  8. Non Lineal for 2D equation (All cases)
  9. UNIT TESTING
  10. NUMERICAL VALIDATION
  11. Non Local 2D?

Test index:

  • Test 1: Preliminar geometry test
  • Test 2: 2D Torsion 1 variable per node. H section - Triangular Quadratic
  • Test 3: 2D Torsion 1 variable per node. Square section - Triangular Quadratic
  • Test 4: 2D Torsion 1 variable per node. Mesh from internet - Square Lineal
  • Test 5: 2D Torsion 1 variable per node. Creating and saving mesh - Triangular Quadratic
  • Test 6: 1D random differential equation 1 variable per node. Linear Quadratic
  • Test 7: GiD Mesh import test - Serendipity elements
  • Test 8: Plane Stress 2 variable per node. Plate in tension - Serendipity
  • Test 9: Plane Stress 2 variable per node. Simple Supported Beam - Serendipity
  • Test 10: Plane Stress 2 variable per node. Cantilever Beam - Triangular Quadratic
  • Test 11: Plane Stress 2 variable per node. Fixed-Fixed Beam - Serendipity
  • Test 12: Plane Strain 2 variable per node. Embankment from GiD - Serendipity
  • Test 13: Plane Strain 2 variable per node. Embankment - Triangular Quadratic
  • Test 14: Plane Stress 2 variable per node. Cantilever Beam - Serendipity
  • Test 15: Profile creation tool. Same as Test 14
  • Test 16: Non Local Plane Stress. [WIP]

References

J. N. Reddy. Introduction to the Finite Element Method, Third Edition (McGraw-Hill Education: New York, Chicago, San Francisco, Athens, London, Madrid, Mexico City, Milan, New Delhi, Singapore, Sydney, Toronto, 2006). https://www.accessengineeringlibrary.com/content/book/9780072466850

Jonathan Richard Shewchuk, (1996) Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AFEM-1.0.7.tar.gz (23.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

AFEM-1.0.7-py3-none-any.whl (33.9 kB view details)

Uploaded Python 3

File details

Details for the file AFEM-1.0.7.tar.gz.

File metadata

  • Download URL: AFEM-1.0.7.tar.gz
  • Upload date:
  • Size: 23.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for AFEM-1.0.7.tar.gz
Algorithm Hash digest
SHA256 e302a23ac7b56fd6c6dc60d2bd51f1dfb1bea8a00da15a59655965a316ae0b4d
MD5 3fe999f40530bca36d0111f5acca4d31
BLAKE2b-256 b057138bcc340d00ba08ec690b0bb96ba92a6705b78d74412bc86bf719e942a5

See more details on using hashes here.

File details

Details for the file AFEM-1.0.7-py3-none-any.whl.

File metadata

  • Download URL: AFEM-1.0.7-py3-none-any.whl
  • Upload date:
  • Size: 33.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for AFEM-1.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 571f2360fd0aa27797acbe529f417cdfb2860d6bf678bb83500a7c406a5a1622
MD5 4de3074c665f1592afc90ce992da4338
BLAKE2b-256 f72029b21d71ab02f4e58ab1c56311fc414b3bc57c9eb9bf23acd5e122466b2a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page