Skip to main content

Analysis and Inter-comparison of Gene Ontology functional annotations

Project description

AIGO is a python library for the Analysis and the Inter-comparison of Gene Ontology functional annotations. see (

Created by Michael Defoin-Platel on 21/02/2010. Copyright (c) 2010. All rights reserved.

Typical usage could look like this:

#!/usr/bin/env python

from AIGO import logger

from AIGO.ReferenceSet import RefSet
from AIGO.FunctionalAnnotation import FuncAnnot
from AIGO.go.OBO import readGOoboXML

from AIGO.Analyse import AnalyseFA
from AIGO.Report import ReportFA

from AIGO.utils.Execute import batchExecute

refSet = RefSet(organism="platypus", fileName="platypus.refSet", refType="Text")
G = readGOoboXML("go_daily-termdb.obo-xml")
FA = FuncAnnot("platypusProject", refSet, G, organism="platypus")"platypus.gaf", "GAF")

analyseFA = AnalyseFA()

analyseFA.largestSet([FA])"Largest sets of annotations:")"\t%d for %s" % (FA['largestSet']['All_aspects_of_GO'],

batchList=["coverage",  "richness", "numberAnnot", "redundancy", "specificity", "informationContent"]
batchExecute(batchList, analyseFA, [FA])

reportFA = ReportFA(outDir=None, name="platypusProject", organism="platypus")
reportFA.printStatistics([FA] ,batchList)


Run in the tests directory


  • Michael Defoin-Platel
  • Matthew Hindle

Project details

Release history Release notifications

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
AIGO-0.1.0.tar.gz (4.0 MB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page