Skip to main content

A Python wrapper for the AMR R package

Project description

The AMR package for R is a powerful tool for antimicrobial resistance (AMR) analysis. It provides extensive features for handling microbial and antimicrobial data. However, for those who work primarily in Python, we now have a more intuitive option available: the AMR Python package.

This Python package is a wrapper around the AMR R package. It uses the rpy2 package internally. Despite the need to have R installed, Python users can now easily work with AMR data directly through Python code.

Prerequisites

This package was only tested with a virtual environment (venv). You can set up such an environment by running:

# linux and macOS:
python -m venv /path/to/new/virtual/environment

# Windows:
python -m venv C:\path\to\new\virtual\environment

Then you can activate the environment, after which the venv is ready to work with.

Install AMR

  1. Since the Python package is available on the official Python Package Index, you can just run:

    pip install AMR
    
  2. Make sure you have R installed. There is no need to install the AMR R package, as it will be installed automatically.

    For Linux:

    # Ubuntu / Debian
    sudo apt install r-base
    # Fedora:
    sudo dnf install R
    # CentOS/RHEL
    sudo yum install R
    

    For macOS (using Homebrew):

    brew install r
    

    For Windows, visit the CRAN download page to download and install R.

Examples of Usage

Cleaning Taxonomy

Here’s an example that demonstrates how to clean microorganism and drug names using the AMR Python package:

import pandas as pd
import AMR

# Sample data
data = {
    "MOs": ['E. coli', 'ESCCOL', 'esco', 'Esche coli'],
    "Drug": ['Cipro', 'CIP', 'J01MA02', 'Ciproxin']
}
df = pd.DataFrame(data)

# Use AMR functions to clean microorganism and drug names
df['MO_clean'] = AMR.mo_name(df['MOs'])
df['Drug_clean'] = AMR.ab_name(df['Drug'])

# Display the results
print(df)
MOs Drug MO_clean Drug_clean
E. coli Cipro Escherichia coli Ciprofloxacin
ESCCOL CIP Escherichia coli Ciprofloxacin
esco J01MA02 Escherichia coli Ciprofloxacin
Esche coli Ciproxin Escherichia coli Ciprofloxacin

Explanation

  • mo_name: This function standardises microorganism names. Here, different variations of Escherichia coli (such as "E. coli", "ESCCOL", "esco", and "Esche coli") are all converted into the correct, standardised form, "Escherichia coli".

  • ab_name: Similarly, this function standardises antimicrobial names. The different representations of ciprofloxacin (e.g., "Cipro", "CIP", "J01MA02", and "Ciproxin") are all converted to the standard name, "Ciprofloxacin".

Calculating AMR

import AMR
import pandas as pd

df = AMR.example_isolates
result = AMR.resistance(df["AMX"])
print(result)
[0.59555556]

Generating Antibiograms

One of the core functions of the AMR package is generating an antibiogram, a table that summarises the antimicrobial susceptibility of bacterial isolates. Here’s how you can generate an antibiogram from Python:

result2a = AMR.antibiogram(df[["mo", "AMX", "CIP", "TZP"]])
print(result2a)
Pathogen Amoxicillin Ciprofloxacin Piperacillin/tazobactam
CoNS 7% (10/142) 73% (183/252) 30% (10/33)
E. coli 50% (196/392) 88% (399/456) 94% (393/416)
K. pneumoniae 0% (0/58) 96% (53/55) 89% (47/53)
P. aeruginosa 0% (0/30) 100% (30/30) None
P. mirabilis None 94% (34/36) None
S. aureus 6% (8/131) 90% (171/191) None
S. epidermidis 1% (1/91) 64% (87/136) None
S. hominis None 80% (56/70) None
S. pneumoniae 100% (112/112) None 100% (112/112)
result2b = AMR.antibiogram(df[["mo", "AMX", "CIP", "TZP"]], mo_transform = "gramstain")
print(result2b)
Pathogen Amoxicillin Ciprofloxacin Piperacillin/tazobactam
Gram-negative 36% (226/631) 91% (621/684) 88% (565/641)
Gram-positive 43% (305/703) 77% (560/724) 86% (296/345)

In this example, we generate an antibiogram by selecting various antibiotics.

Taxonomic Data Sets Now in Python!

As a Python user, you might like that the most important data sets of the AMR R package, microorganisms, antimicrobials, clinical_breakpoints, and example_isolates, are now available as regular Python data frames:

AMR.microorganisms
mo fullname status kingdom gbif gbif_parent gbif_renamed_to prevalence
B_GRAMN (unknown Gram-negatives) unknown Bacteria None None None 2.0
B_GRAMP (unknown Gram-positives) unknown Bacteria None None None 2.0
B_ANAER-NEG (unknown anaerobic Gram-negatives) unknown Bacteria None None None 2.0
B_ANAER-POS (unknown anaerobic Gram-positives) unknown Bacteria None None None 2.0
B_ANAER (unknown anaerobic bacteria) unknown Bacteria None None None 2.0
... ... ... ... ... ... ... ...
B_ZYMMN_POMC Zymomonas pomaceae accepted Bacteria 10744418 3221412 None 2.0
B_ZYMPH Zymophilus synonym Bacteria None 9475166 None 2.0
B_ZYMPH_PCVR Zymophilus paucivorans synonym Bacteria None None None 2.0
B_ZYMPH_RFFN Zymophilus raffinosivorans synonym Bacteria None None None 2.0
F_ZYZYG Zyzygomyces unknown Fungi None 7581 None 2.0
AMR.antimicrobials
ab cid name group oral_ddd oral_units iv_ddd iv_units
AMA 4649.0 4-aminosalicylic acid Antimycobacterials 12.00 g NaN None
ACM 6450012.0 Acetylmidecamycin Macrolides/lincosamides NaN None NaN None
ASP 49787020.0 Acetylspiramycin Macrolides/lincosamides NaN None NaN None
ALS 8954.0 Aldesulfone sodium Other antibacterials 0.33 g NaN None
AMK 37768.0 Amikacin Aminoglycosides NaN None 1.0 g
... ... ... ... ... ... ... ...
VIR 11979535.0 Virginiamycine Other antibacterials NaN None NaN None
VOR 71616.0 Voriconazole Antifungals/antimycotics 0.40 g 0.4 g
XBR 72144.0 Xibornol Other antibacterials NaN None NaN None
ZID 77846445.0 Zidebactam Other antibacterials NaN None NaN None
ZFD NaN Zoliflodacin None NaN None NaN None

Conclusion

With the AMR Python package, Python users can now effortlessly call R functions from the AMR R package. This eliminates the need for complex rpy2 configurations and provides a clean, easy-to-use interface for antimicrobial resistance analysis. The examples provided above demonstrate how this can be applied to typical workflows, such as standardising microorganism and antimicrobial names or calculating resistance.

By just running import AMR, users can seamlessly integrate the robust features of the R AMR package into Python workflows.

Whether you're cleaning data or analysing resistance patterns, the AMR Python package makes it easy to work with AMR data in Python.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

amr-3.0.1.9021.tar.gz (10.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

amr-3.0.1.9021-py3-none-any.whl (10.5 kB view details)

Uploaded Python 3

File details

Details for the file amr-3.0.1.9021.tar.gz.

File metadata

  • Download URL: amr-3.0.1.9021.tar.gz
  • Upload date:
  • Size: 10.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for amr-3.0.1.9021.tar.gz
Algorithm Hash digest
SHA256 0159505ad41d460056fa0d804ebd70f05b57b2917583d1a83ef29134ac3d0b1e
MD5 07f006d7b5450b290e3c70adc2b6f31a
BLAKE2b-256 1db1427854887ec76a29c9903d07c8bca230743c2fb38717914752e38b97a353

See more details on using hashes here.

File details

Details for the file amr-3.0.1.9021-py3-none-any.whl.

File metadata

  • Download URL: amr-3.0.1.9021-py3-none-any.whl
  • Upload date:
  • Size: 10.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.25

File hashes

Hashes for amr-3.0.1.9021-py3-none-any.whl
Algorithm Hash digest
SHA256 7e6047ff119f963a5e87516630687ae6a6d11c7006f85d5061f4e152e350368b
MD5 f51d0902a54d912363dea209dfb0242d
BLAKE2b-256 ef7f2fc1fa171590077062913d8d8c57d1a1ae42ec44cc46576868acbee7e412

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page