ARCCSS Data Archive Tools
Project description
# ARCCSSive
ARCCSS Data Access Tools
[![Documentation Status](https://readthedocs.org/projects/arccssive/badge/?version=latest)](https://readthedocs.org/projects/arccssive/?badge=latest)
[![Build Status](https://travis-ci.org/coecms/ARCCSSive.svg?branch=master)](https://travis-ci.org/coecms/ARCCSSive)
[![CircleCI](https://circleci.com/gh/coecms/ARCCSSive.svg?style=shield)](https://circleci.com/gh/coecms/ARCCSSive)
[![codecov.io](http://codecov.io/github/coecms/ARCCSSive/coverage.svg?branch=master)](http://codecov.io/github/coecms/ARCCSSive?branch=master)
[![Code Health](https://landscape.io/github/coecms/ARCCSSive/master/landscape.svg?style=flat)](https://landscape.io/github/coecms/ARCCSSive/master)
[![Code Climate](https://codeclimate.com/github/coecms/ARCCSSive/badges/gpa.svg)](https://codeclimate.com/github/coecms/ARCCSSive)
[![PyPI version](https://badge.fury.io/py/ARCCSSive.svg)](https://pypi.python.org/pypi/ARCCSSive)
[![Anaconda-Server Badge](https://anaconda.org/coecms/arccssive/badges/version.svg)](https://anaconda.org/coecms/arccssive)
For full documentation please see http://arccssive.readthedocs.org/en/stable
Installing
==========
### Raijin
The stable version of ARCCSSive is available on Rajin in the `analysis27` Anaconda environment:
raijin $ module use /g/data3/hh5/public/modules
raijin $ module load conda/analysis27
and is also available as a module:
raijin $ module use ~access/modules
raijin $ module load pythonlib/ARCCSSive
### NCI Virtual Desktops
NCI's virtual desktops allow you to use ARCCSSive from a Jupyter notebook. For
details on how to use virtual desktops see http://vdi.nci.org.au/help
ARCCSSive can be accessed on VDI using the Anaconda environments:
vdi $ module use /g/data3/hh5/public/modules
vdi $ module load conda/analysis27
### Local Install
You can install ARCCSSive locally using either Anaconda or Pip. You will need
to copy the database file from Raijin
$ pip install ARCCSSive
# or
$ conda install -c coecms arccssive
$ scp raijin:/g/data1/ua6/unofficial-ESG-replica/tmp/tree/cmip5_raijin_latest.db $PWD/cmip5.db
$ export CMIP5_DB=sqlite:///$PWD/cmip5.db
### Development Version
To install the current development version with a test database:
$ pip install --user git+https://github.com/coecms/ARCCSSive.git
$ export CMIP5_DB=sqlite:///$HOME/cmip5.db
CMIP5
=====
Query and access the CMIP5 data from Raijin
```python
from ARCCSSive import CMIP5
cmip = CMIP5.DB.connect()
for output in cmip.outputs(model='ACCESS1-0'):
variable = output.variable
files = output.filenames()
```
Uses
[SQLAlchemy](http://docs.sqlalchemy.org/en/rel_1_0/orm/tutorial.html#querying)
to filter and sort the data files.
ARCCSS Data Access Tools
[![Documentation Status](https://readthedocs.org/projects/arccssive/badge/?version=latest)](https://readthedocs.org/projects/arccssive/?badge=latest)
[![Build Status](https://travis-ci.org/coecms/ARCCSSive.svg?branch=master)](https://travis-ci.org/coecms/ARCCSSive)
[![CircleCI](https://circleci.com/gh/coecms/ARCCSSive.svg?style=shield)](https://circleci.com/gh/coecms/ARCCSSive)
[![codecov.io](http://codecov.io/github/coecms/ARCCSSive/coverage.svg?branch=master)](http://codecov.io/github/coecms/ARCCSSive?branch=master)
[![Code Health](https://landscape.io/github/coecms/ARCCSSive/master/landscape.svg?style=flat)](https://landscape.io/github/coecms/ARCCSSive/master)
[![Code Climate](https://codeclimate.com/github/coecms/ARCCSSive/badges/gpa.svg)](https://codeclimate.com/github/coecms/ARCCSSive)
[![PyPI version](https://badge.fury.io/py/ARCCSSive.svg)](https://pypi.python.org/pypi/ARCCSSive)
[![Anaconda-Server Badge](https://anaconda.org/coecms/arccssive/badges/version.svg)](https://anaconda.org/coecms/arccssive)
For full documentation please see http://arccssive.readthedocs.org/en/stable
Installing
==========
### Raijin
The stable version of ARCCSSive is available on Rajin in the `analysis27` Anaconda environment:
raijin $ module use /g/data3/hh5/public/modules
raijin $ module load conda/analysis27
and is also available as a module:
raijin $ module use ~access/modules
raijin $ module load pythonlib/ARCCSSive
### NCI Virtual Desktops
NCI's virtual desktops allow you to use ARCCSSive from a Jupyter notebook. For
details on how to use virtual desktops see http://vdi.nci.org.au/help
ARCCSSive can be accessed on VDI using the Anaconda environments:
vdi $ module use /g/data3/hh5/public/modules
vdi $ module load conda/analysis27
### Local Install
You can install ARCCSSive locally using either Anaconda or Pip. You will need
to copy the database file from Raijin
$ pip install ARCCSSive
# or
$ conda install -c coecms arccssive
$ scp raijin:/g/data1/ua6/unofficial-ESG-replica/tmp/tree/cmip5_raijin_latest.db $PWD/cmip5.db
$ export CMIP5_DB=sqlite:///$PWD/cmip5.db
### Development Version
To install the current development version with a test database:
$ pip install --user git+https://github.com/coecms/ARCCSSive.git
$ export CMIP5_DB=sqlite:///$HOME/cmip5.db
CMIP5
=====
Query and access the CMIP5 data from Raijin
```python
from ARCCSSive import CMIP5
cmip = CMIP5.DB.connect()
for output in cmip.outputs(model='ACCESS1-0'):
variable = output.variable
files = output.filenames()
```
Uses
[SQLAlchemy](http://docs.sqlalchemy.org/en/rel_1_0/orm/tutorial.html#querying)
to filter and sort the data files.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ARCCSSive-0.3.3.tar.gz
(61.4 kB
view hashes)
Built Distributions
ARCCSSive-0.3.3-py3-none-any.whl
(31.8 kB
view hashes)
ARCCSSive-0.3.3-py2-none-any.whl
(31.8 kB
view hashes)
Close
Hashes for ARCCSSive-0.3.3-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 668bfe9a2cbe7937aac84f7f91f6ec69f6a882ec1cde843b3fde1235ea0bf79a |
|
MD5 | f8bca344fb1bd0c8e37802a6d8573132 |
|
BLAKE2b-256 | 3b7f1fd7729f86e8a7b8d77db5a0f418485323860f48392da3a205601dc9ddfc |
Close
Hashes for ARCCSSive-0.3.3-py2-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bcd3d1cbac678f7d2140da8f854a126b1790d44e8855a9799c5b7b7f59fcd6e7 |
|
MD5 | 414c966d3c7fd85b29bf07be4031742b |
|
BLAKE2b-256 | 62a35f9fdc983182f1c22d998b13463e2ae2224ede7eb29e2755af7bf76968f5 |