Skip to main content

A neural network for structure parameter determination

Project description

Auriga

Auriga neural net predicts age, extinction, and distance to stellar populations

positional arguments:
  tableIn               Input table with Gaia DR2 source ids and cluster ids

optional arguments:
  -h, --help            show this help message and exit
  --tutorial            Use included test.fits or test.csv files as inputs
  --tableOut TABLEOUT   Prefix of the csv file into which the cluster
                        properties should be written, default tableIn-out
  --iters ITERS         Number of iterations of each cluster is passed through
                        Auriga to generate the errors, default 10
  --localFlux           Download necessary flux from Gaia archive for all
                        source ids, default True
  --saveFlux SAVEFLUX   If downloading flux, prefix of file where to save it,
                        default empty
  --silent SILENT       Suppress print statements, default False
  --cluster CLUSTER     Column with cluster membership
  --source_id SOURCE_ID
                        Column with Gaia DR2 source id,
  --gaiaFluxErrors GAIAFLUXERRORS
                        If loading flux, whether uncertainties in Gaia bands
                        have been converted from flux to magnitude, default
                        True
  --g G                 If loading flux, column for G magnitude
  --bp BP               If loading flux, column for BP magnitude
  --rp RP               If loading flux, column for RP magnitude
  --j J                 If loading flux, column for J magnitude
  --h H                 If loading flux, column for H magnitude
  --k K                 If loading flux, column for K magnitude
  --parallax PARALLAX   If loading flux, column for parallax
  --eg EG               If loading flux, column for uncertainty in G magnitude
  --ebp EBP             If loading flux, column for uncertainty in BP
                        magnitude
  --erp ERP             If loading flux, column for uncertainty in RP
                        magnitude
  --ej EJ               If loading flux, column for uncertainty in J magnitude
  --eh EH               If loading flux, column for uncertainty in H magnitude
  --ek EK               If loading flux, column for uncertainty in K magnitude
  --eparallax EPARALLAX
                        If loading flux, column for uncertainty in parallax
  --gf GF               If uncertainties have not been converted to
                        magnitudes, column for G flux
  --bpf BPF             If uncertainties have not been converted to
                        magnitudes, column for BP flux
  --rpf RPF             If uncertainties have not been converted to
                        magnitudes, column for RP flux
  --egf EGF             If uncertainties have not been converted to
                        magnitudes, column for uncertainty in G flux
  --ebpf EBPF           If uncertainties have not been converted to
                        magnitudes, column for uncertainty in BP flux
  --erpf ERPF           If uncertainties have not been converted to
                        magnitudes, column for uncertainty in RP flux

Examples:

Downloading photometry from the Gaia Archive for the sources defined in the fits table, saving the fluxes, and generating the outputs

auriga test.fits --tableOut test-out --saveFlux test --tutorial 

Using previously downloaded fluxes to generate predictions. 20 implementations of each cluster are generated instead of 10, to estimate the uncertainties in the cluster parameters

auriga test.csv --localFlux --iters=20 --tutorial

Using previously downloaded fluxes, defining all the necessary columns

auriga test.fits --localFlux --gaiaFluxErrors --g phot_g_mean_mag --bp phot_bp_mean_mag \
           --rp phot_rp_mean_mag --j j_m --h h_m --k ks_m --ej j_msigcom --eh h_msigcom \
           --ek ks_msigcom --eparallax parallax_error --tutorial --silent

Required packages:

  • Astropy
  • Astroquery
  • Pytorch
  • Pandas

Project details


Release history Release notifications

This version

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for Auriga, version 0.1
Filename, size File type Python version Upload date Hashes
Filename, size Auriga-0.1-py3-none-any.whl (2.7 MB) File type Wheel Python version py3 Upload date Hashes View
Filename, size Auriga-0.1.tar.gz (2.7 MB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page