Auto Quant
Project description
AutoQuant
AutoQuant is an out-of-the-box quantitative investment platform.
It contains the full ML pipeline of data processing, strategy building(includes AI & traditionals), back-testing, and covers the entire chain of quantitative investment: alpha seeking, risk modeling, portfolio optimization, and order execution.
With AutoQuant, users can easily try ideas to create better Quant investment strategies.
Quick Start
Installation
pip install --upgrade autoquant
Data Preparation
collector = Collector.default()
data = collector.daily_prices(market=Market.SZ, code='002594', start=date(2021, 11, 1), end=date(2021, 11, 5))
Advanced Topics
Data Provider
- BaostockProvider
- TushareProvider
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
AutoQuant-0.1.0.tar.gz
(4.7 kB
view details)
Built Distribution
File details
Details for the file AutoQuant-0.1.0.tar.gz
.
File metadata
- Download URL: AutoQuant-0.1.0.tar.gz
- Upload date:
- Size: 4.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 43cfeb276e24877604856cfa971eaffe29f96c5e990eff76a6789a5327152991 |
|
MD5 | e71bf1ab6cfc28fce1fe5c0c5bb5e154 |
|
BLAKE2b-256 | ec2b1431dd02b7622f0d0c3c8d0ddf2f4d1ce7ac83dd9eb27c79fa13dce3b9ed |
File details
Details for the file AutoQuant-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: AutoQuant-0.1.0-py3-none-any.whl
- Upload date:
- Size: 5.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.5.0 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d528afd06b5ea825aab0e9ca75ccec4697258ffab0a23c21d5e3aae614cd02ad |
|
MD5 | 33d23e6c29ba6efc516f0eb4911f009f |
|
BLAKE2b-256 | 663f75bba99b2fa0db56be915b3203900a4cab5ec029c28d1aeb7d9eb9602a9a |