Skip to main content

Using emulators to implement baryonic effects.

Project description

BCemu

License GitHub Repository CI Status PyPI version

A Python package for modelling baryonic effects in cosmological simulations.

Package details

The package provides emulators to model the suppression in the power spectrum due to baryonic feedback processes. These emulators are based on the baryonification model (Schneider et al. 2019), where gravity-only N-body simulation results are manipulated to include the impact of baryonic feedback processes. For a detailed description, see Giri & Schneider (2021).

INSTALLATION

One can install a stable version of this package using pip by running the following command::

pip install BCemu

In order to use the latest version, one can clone this package running the following::

git clone https://github.com/sambit-giri/BCemu.git

To install the package in the standard location, run the following in the root directory::

python setup.py install

In order to install it in a separate directory::

python setup.py install --home=directory

One can also install it using pip by running the following command::

pip install git+https://github.com/sambit-giri/BCemu.git

The dependencies should be installed automatically during the installation process. If they fail, you can install them manually before installing BCemu. The list of required packages can be found in the requirements.txt file in the root directory.

Tests

For testing, one can use pytest or nosetests. Both packages can be installed using pip. To run all the test script, run either of the following::

python -m pytest tests

nosetests -v

📖 Citation

If you use BCemu in your research, please cite the following paper:

Giri, S. K., & Schneider, A. (2021). Emulation of baryonic effects on the matter power spectrum and constraints from galaxy cluster data. Journal of Cosmology and Astroparticle Physics, 2021(12), 046. https://doi.org/10.1088/1475-7516/2021/12/046

BibTeX entries:

@article{giri2021emulation,
  title={Emulation of baryonic effects on the matter power spectrum and constraints from galaxy cluster data},
  author={Giri, Sambit K and Schneider, Aurel},
  journal={Journal of Cosmology and Astroparticle Physics},
  volume={2021},
  number={12},
  pages={046},
  year={2021},
  publisher={IOP Publishing}
}

USAGE

Script to get the baryonic power suppression.

import numpy as np 
import matplotlib.pyplot as plt
import BCemu

bfcemu = BCemu.BCM_7param(Ob=0.05, Om=0.27)
bcmdict = {'log10Mc': 13.32,
           'mu'     : 0.93,
           'thej'   : 4.235,  
           'gamma'  : 2.25,
           'delta'  : 6.40,
           'eta'    : 0.15,
           'deta'   : 0.14,
           }

z = 0
k_eval = 10**np.linspace(-1,1.08,50)
p_eval = bfcemu.get_boost(z, bcmdict, k_eval)

plt.semilogx(k_eval, p_eval, c='C0', lw=3)
plt.axis([1e-1,12,0.73,1.04])
plt.yticks(fontsize=14)
plt.xticks(fontsize=14)
plt.xlabel(r'$k$ (h/Mpc)', fontsize=14)
plt.ylabel(r'$\frac{P_{\rm DM+baryon}}{P_{\rm DM}}$', fontsize=21)
plt.tight_layout()
plt.show()

The package also has a three-parameter baryonification model. Model A assumes all three parameters to be independent of redshift while model B assumes the parameters to be redshift-dependent via the following form:

.

Below an example fit to the BAHAMAS simulation result is shown.

import numpy as np 
import matplotlib.pyplot as plt
import BCemu
import pickle

BAH = pickle.load(open('examples/BAHAMAS_data.pkl', 'rb'))

bfcemu = BCemu.BCM_3param(Ob=0.0463, Om=0.2793)
bcmdict = {'log10Mc': 13.25, 
           'thej'   : 4.711,  
           'deta'   : 0.097}

zs = [0,0.5]
k_eval  = 10**np.linspace(-1,1.08,50)
p0_eval1 = bfcemu.get_boost(zs[0], bcmdict, k_eval)
p1_eval1 = bfcemu.get_boost(zs[1], bcmdict, k_eval)

bfcemu = BCemu.BCM_3param(Ob=0.0463, Om=0.2793)
bcmdict = {'log10Mc': 13.25, 
           'thej'   : 4.711,  
           'deta'   : 0.097,
           'nu_Mc'  : 0.038,
           'nu_thej': 0.0,
           'nu_deta': 0.060}

zs = [0,0.5]
k_eval  = 10**np.linspace(-1,1.08,50)
p0_eval2 = bfcemu.get_boost(zs[0], bcmdict, k_eval)
p1_eval2 = bfcemu.get_boost(zs[1], bcmdict, k_eval)

plt.figure(figsize=(10,4.5))
plt.subplot(121); plt.title('z=0')
plt.semilogx(BAH['z=0']['k'], BAH['z=0']['S'], '-', c='k', lw=5, alpha=0.2, label='BAHAMAS')
plt.semilogx(k_eval, p0_eval1, c='C0', lw=3, label='A', ls='--')
plt.semilogx(k_eval, p0_eval1, c='C2', lw=3, label='B', ls=':')
plt.axis([1e-1,12,0.73,1.04])
plt.yticks(fontsize=14)
plt.xticks(fontsize=14)
plt.legend()
plt.xlabel(r'$k$ (h/Mpc)', fontsize=14)
plt.ylabel(r'$\frac{P_{\rm DM+baryon}}{P_{\rm DM}}$', fontsize=21)
plt.subplot(122); plt.title('z=0.5')
plt.semilogx(BAH['z=0.5']['k'], BAH['z=0.5']['S'], '-', c='k', lw=5, alpha=0.2, label='BAHAMAS')
plt.semilogx(k_eval, p1_eval1, c='C0', lw=3, label='A', ls='--')
plt.semilogx(k_eval, p1_eval2, c='C2', lw=3, label='B', ls=':')
plt.axis([1e-1,12,0.73,1.04])
plt.yticks(fontsize=14)
plt.xticks(fontsize=14)
plt.xlabel(r'$k$ (h/Mpc)', fontsize=14)
plt.ylabel(r'$\frac{P_{\rm DM+baryon}}{P_{\rm DM}}$', fontsize=21)
plt.tight_layout()
plt.show()

CONTRIBUTING

If you find any bugs or unexpected behaviour in the code, please feel free to open a Github issue. The issue page is also good if you seek help or have suggestions for us.

References

[1] Schneider, A., Teyssier, R., Stadel, J., Chisari, N. E., Le Brun, A. M., Amara, A., & Refregier, A. (2019). Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation. Journal of Cosmology and Astroparticle Physics, 2019(03), 020. arXiv:1810.08629.

[2] Giri, S. K. & Schneider, A. (2021). Emulation of baryonic effects on the matter power spectrum and constraints from galaxy cluster data. Journal of Cosmology and Astroparticle Physics, 2021(12), 046. arXiv:2108.08863.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bcemu-1.1.4.tar.gz (35.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

bcemu-1.1.4-py3-none-any.whl (33.6 kB view details)

Uploaded Python 3

File details

Details for the file bcemu-1.1.4.tar.gz.

File metadata

  • Download URL: bcemu-1.1.4.tar.gz
  • Upload date:
  • Size: 35.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.12

File hashes

Hashes for bcemu-1.1.4.tar.gz
Algorithm Hash digest
SHA256 6f7ee72c3ae05fb2c03b350f79ed6b92512d34189ca13806790270090fa8fa69
MD5 eb72885fbad8792efc79c3a9c2425fbe
BLAKE2b-256 8008f3272001d2d23bfe14952ae59adeaee69feeed48312fa5c4c413dc1e3ac2

See more details on using hashes here.

File details

Details for the file bcemu-1.1.4-py3-none-any.whl.

File metadata

  • Download URL: bcemu-1.1.4-py3-none-any.whl
  • Upload date:
  • Size: 33.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.12

File hashes

Hashes for bcemu-1.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 14edd25673531f3e19864dbdc568ad1e6e5efe04c2e98a03b3f20cfaa5fed7d1
MD5 0347d5be138617aeb247c697ade4c35d
BLAKE2b-256 8eefe69b3e25d470cda72d7b0e58e07a37fa1197bd07dd6841177ab69dc90386

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page