WHFDL for data classification
Project description
CWHFDL
A package for data classification with WHFDL.
This package is part of "WHFDL: an explainable method based on World Hyper-heuristic and Fuzzy Deep Learning approaches for gastric cancer detection using metabolomics data" article's experiment.
Example:
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from torch.utils.data import DataLoader, TensorDataset, random_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import roc_curve, auc, confusion_matrix, classification_report
import CWHFDL as cw
cw.set_seed(42)
df = pd.read_csv('CGMAIN1.csv')
X = df.drop(columns='state').values
y = df['state'].values
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_tensor = torch.tensor(X, dtype=torch.float32)
y_tensor = torch.tensor(y, dtype=torch.long)
dataset = TensorDataset(X_tensor, y_tensor)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
model = cw.FDNN(
in_features=X.shape[1],
hidden_dim=128,
num_memberships=3,
num_classes=len(np.unique(y)),
dropout_rate=0.1
)
cw.initialize_fuzzy_layer(model.fuzzy, train_loader)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
model.train()
for epoch in range(100):
total_loss = 0
for x_batch, y_batch in train_loader:
optimizer.zero_grad()
outputs = model(x_batch)
loss = criterion(outputs, y_batch)
loss.backward()
optimizer.step()
total_loss += loss.item()
print(f"Epoch {epoch + 1}: Loss = {total_loss:.4f}")
model.eval()
all_preds, all_probs, all_labels = [], [], []
with torch.no_grad():
for x_batch, y_batch in test_loader:
outputs = model(x_batch)
probs = torch.softmax(outputs, dim=1)
preds = torch.argmax(probs, dim=1)
all_preds.extend(preds.numpy())
all_probs.extend(probs[:, 1].numpy())
all_labels.extend(y_batch.numpy())
print(
classification_report(
all_labels,
all_preds,
target_names=[
'Negative',
'Positive']))
conf_matrix = confusion_matrix(all_labels, all_preds)
plt.figure(figsize=(8, 6))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
xticklabels=['Predicted Negative', 'Predicted Positive'],
yticklabels=['Actual Negative', 'Actual Positive'])
plt.title('WHFDL Confusion Matrix', fontsize=16, fontweight='bold')
plt.xlabel('Predicted Label', fontsize=14)
plt.ylabel('True Label', fontsize=14)
plt.show()
fpr, tpr, thresholds = roc_curve(all_labels, all_probs)
roc_auc = auc(fpr, tpr)
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC Curve (AUC = {roc_auc:.4f}')
plt.plot([0, 1], [0, 1], color='red', linestyle='--', label='Random Guessing')
plt.xlabel('False Positive Rate', fontsize=14)
plt.ylabel('True Positive Rate', fontsize=14)
plt.title('WHFDL (ROC)', fontsize=16, fontweight='bold')
plt.legend(loc="lower right")
plt.grid(True)
plt.show()
You can find the "CGMAIN1.csv" here.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file cwhfdl-0.0.2-py3-none-any.whl.
File metadata
- Download URL: cwhfdl-0.0.2-py3-none-any.whl
- Upload date:
- Size: 4.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.13.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
b9209118510343b1501bbc8234a49b362fdc7e23f06546cb912204fada483063
|
|
| MD5 |
a92225f55453dd3d32b54e65487e67b2
|
|
| BLAKE2b-256 |
657ddf36c6797c423e8e81d025a3e0e5751d810f127c32124881879f34c62894
|