Skip to main content

A a framework for cleaning, pre-processing and exploring data in a scalable and distributed manner.

Project description

<div align="center">
<img src="https://pyofey.pythonanywhere.com/static/cf_logo_compressed_scaled.png"><br><br>
</div>

CleanFlow is a framework for cleaning, pre-processing and exploring data in a scalable and distributed manner. Being built on top of Apache Spark, it is highly scalable.

## Features
* Explore data
* Clean Data
* Get output in different formats

## Installation
`pip install CleanFlow`

## Sample usage

Start Pyspark session
```
$ pyspark

Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 2.2.1
/_/

Using Python version 3.5.2 (default, Nov 23 2017 16:37:01)
SparkSession available as 'spark'.
```
## Load data
```python
# DataFrame (df)
>>> df = sqlContext.read.format('csv').options(header='true',inferschema='true').load('sample.csv')
>>> type(df)

pyspark.sql.dataframe.DataFrame

>>> df.printSchema()
'''
root
|-- summons_number: long (nullable = true)
|-- issue_date: timestamp (nullable = true)
|-- violation_code: integer (nullable = true)
|-- violation_county: string (nullable = true)
|-- violation_description: string (nullable = true)
|-- violation_location: integer (nullable = true)
|-- violation_precinct: integer (nullable = true)
|-- violation_time: string (nullable = true)
|-- time_first_observed: string (nullable = true)
|-- meter_number: string (nullable = true)
|-- issuer_code: integer (nullable = true)
|-- issuer_command: string (nullable = true)
|-- issuer_precinct: integer (nullable = true)
|-- issuing_agency: string (nullable = true)
|-- plate_id: string (nullable = true)
|-- plate_type: string (nullable = true)
|-- registration_state: string (nullable = true)
|-- street_name: string (nullable = true)
|-- vehicle_body_type: string (nullable = true)
|-- vehicle_color: string (nullable = true)
|-- vehicle_make: string (nullable = true)
|-- vehicle_year: string (nullable = true)
'''
```
## Explore Data
```python
>>> from cleanflow.exploratory import describe
>>> describe(df)
```
| | summons_number | violation_code | violation_location | violation_precinct | issuer_code |
|-------|----------------|----------------|--------------------|--------------------|---------------|
| count | 1.000000e+05 | 100000.000000 | 100000.000000 | 100000.000000 | 100000.00000 |
| mean | 6.046625e+09 | 36.468890 | 66.483920 | 66.483980 | 445461.251460 |
| std | 2.384666e+09 | 19.455201 | 34.810481 | 34.810365 | 199702.620407 |
| min | 1.119098e+09 | 1.000000 | -1.000000 | 0.000000 | 0.000000 |
| 25% | 7.014648e+09 | 21.000000 | 43.000000 | 43.000000 | 355455.000000 |
| 50% | 7.100271e+09 | 37.000000 | 66.000000 | 66.000000 | 361282.000000 |
| 75% | 7.451945e+09 | 41.000000 | 103.000000 | 103.000000 | 363040.000000 |
| max | 7.698377e+09 | 99.000000 | 803.000000 | 803.000000 | 999843.000000 |
```python

>>> # Choose a subset of data
>>> df = df.select('summons_number', 'violation_code', 'violation_county', 'plate_type', 'vehicle_year')
>>> df.show(10)
'''
+--------------+--------------+----------------+----------+------------+
|summons_number|violation_code|violation_county|plate_type|vehicle_year|
+--------------+--------------+----------------+----------+------------+
| 1307964308| 14| NY! | PAS| 2008|
| 1362655727| 98| BX$ | PAS| 1999|
| 1363178234| 21| NY$ | COM| 0|
| 1365797030| 74| K$! | PAS| 1999|
| 1366529595| 38| NY | COM| 2005|
| 1366571757| 20| NY| COM| 2013|
| 1363178192| 21| NY| PAS| 0|
| 1362906062| 21| BX| PAS| 2008|
| 1367591351| 40| K| PAS| 2005|
| 1354042244| 20| NY| COM| 0|
+--------------+--------------+----------------+----------+------------+
'''
only showing top 10 rows
```

```python
>>> from cleanflow.exploratory import check_duplicates, find_unique
>>> check_duplicates(df, column='violation_county').show()
'''
+--------------+-----+
|DuplicateValue|Count|
+--------------+-----+
| K|29123|
| Q|25961|
| BX|21203|
| NY|20513|
| R| 2728|
| null| 467|
+--------------+-----+
'''
>>> find_unique(df, column='violation_county').show()
'''
+------------+-----+
|UniqueValues|Count|
+------------+-----+
| K|29123|
| Q|25961|
| BX|21203|
| NY|20513|
| R| 2728|
| null| 467|
| NY | 1|
| NY$ | 1|
| K$! | 1|
| BX$ | 1|
| NY! | 1|
+------------+-----+
'''
```
## Clean data
```python
>>> import cleanflow.preprocessing as cfpr
>>> cfpr.rmSpChars(cfpr.trim_col(df)).show(10)
'''
+--------------+--------------+----------------+----------+------------+
|summons_number|violation_code|violation_county|plate_type|vehicle_year|
+--------------+--------------+----------------+----------+------------+
| 1307964308| 14| NY| PAS| 2008|
| 1362655727| 98| BX| PAS| 1999|
| 1363178234| 21| NY| COM| 0|
| 1365797030| 74| K| PAS| 1999|
| 1366529595| 38| NY| COM| 2005|
| 1366571757| 20| NY| COM| 2013|
| 1363178192| 21| NY| PAS| 0|
| 1362906062| 21| BX| PAS| 2008|
| 1367591351| 40| K| PAS| 2005|
| 1354042244| 20| NY| COM| 0|
+--------------+--------------+----------------+----------+------------+
'''
only showing top 10 rows

>>> cfpr.rmSpChars(trim_col(df), regex='[^A-Za-z0-9]+').show(10)
'''
+--------------+--------------+----------------+----------+------------+
|summons_number|violation_code|violation_county|plate_type|vehicle_year|
+--------------+--------------+----------------+----------+------------+
| 1307964308| 14| NY| PAS| 2008|
| 1362655727| 98| BX| PAS| 1999|
| 1363178234| 21| NY| COM| 0|
| 1365797030| 74| K| PAS| 1999|
| 1366529595| 38| NY| COM| 2005|
| 1366571757| 20| NY| COM| 2013|
| 1363178192| 21| NY| PAS| 0|
| 1362906062| 21| BX| PAS| 2008|
| 1367591351| 40| K| PAS| 2005|
| 1354042244| 20| NY| COM| 0|
+--------------+--------------+----------------+----------+------------+
'''
only showing top 10 rows
```

```python
>>> cfpr.upper_case(cfpr.lower_case(df), columns='violation_county').show(10)
'''
+--------------+--------------+----------------+----------+------------+
|summons_number|violation_code|violation_county|plate_type|vehicle_year|
+--------------+--------------+----------------+----------+------------+
| 1307964308| 14| NY! | pas| 2008|
| 1362655727| 98| BX$ | pas| 1999|
| 1363178234| 21| NY$ | com| 0|
| 1365797030| 74| K$! | pas| 1999|
| 1366529595| 38| NY | com| 2005|
| 1366571757| 20| NY| com| 2013|
| 1363178192| 21| NY| pas| 0|
| 1362906062| 21| BX| pas| 2008|
| 1367591351| 40| K| pas| 2005|
| 1354042244| 20| NY| com| 0|
+--------------+--------------+----------------+----------+------------+
'''
only showing top 10 rows
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
CleanFlow-1.3.3a1.tar.gz (10.8 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page