Skip to main content

An educational module meant to serve as a prelude to talking about automatic differentiation in deep learning frameworks (for example, as provided by the Autograd module in PyTorch)

Project description

Consult the module API page at

https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-1.1.0.html

for all information related to this module, including information related to the latest changes to the code.

from ComputationalGraphPrimer import *

cgp = ComputationalGraphPrimer(
               expressions = ['xx=xa^2',
                              'xy=ab*xx+ac*xa',
                              'xz=bc*xx+xy',
                              'xw=cd*xx+xz^3'],
               output_vars = ['xw'],
               dataset_size = 10000,
               learning_rate = 1e-6,
               grad_delta    = 1e-4,
               display_vals_how_often = 1000,
      )

cgp.parse_expressions()
cgp.display_network1()
cgp.gen_gt_dataset(vals_for_learnable_params = {'ab':1.0, 'bc':2.0, 'cd':3.0, 'ac':4.0})
cgp.train_on_all_data()
cgp.plot_loss()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ComputationalGraphPrimer-1.1.0.tar.gz (76.3 kB view details)

Uploaded Source

File details

Details for the file ComputationalGraphPrimer-1.1.0.tar.gz.

File metadata

File hashes

Hashes for ComputationalGraphPrimer-1.1.0.tar.gz
Algorithm Hash digest
SHA256 ea498d73572334d562eadd15564e28c9a31b759a05114f8b1a7a04f2dab2e4bc
MD5 515d1afe3dae09b4d7bcb4ea8e2e5e4c
BLAKE2b-256 fdbece85f08e3d3132cb052f37af7c467dc2b87b00157b730379c33ebf3b274f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page