Skip to main content

Conserved water search is a tool for finding conserved water molecules from MD trajectories.

Project description

ConservedWaterSearch

https://readthedocs.org/projects/conservedwatersearch/badge/?version=latest https://badge.fury.io/py/conservedwatersearch.svg https://img.shields.io/conda/vn/conda-forge/conservedwatersearch.svg

The ConservedWaterSearch (CWS) Python library uses density based clustering approach to detect conserved waters from simulation trajectories. First, positions of water molecules are determined based on clustering of oxygen atoms belonging to water molecules(see figure below for more information). Positions on water molecules can be determined using Multi Stage Re-Clustering (MSRC) approach or Single Clustering (SC) approach (see for more information on clustering procedures).

Requirements: Python 3.10+ and NumPy 2+.

https://raw.githubusercontent.com/JecaTosovic/ConservedWaterSearch/main/docs/source/figs/Scheme.png

Conserved water molecules can be classified into 3 distinct conserved water types based on their hydrogen orientation: Fully Conserved Waters (FCW), Half Conserved Waters (HCW) and Weakly Conserved Waters (WCW) - see figure below for examples and more information or see CWS docs.

https://raw.githubusercontent.com/JecaTosovic/ConservedWaterSearch/main/docs/source/figs/WaterTypes.png

Both, MSRC and SC can be used with either OPTICS (via sklearn) and HDBSCAN. MSRC approach using either of the two algorithms produces better quality results at the cost of computational time, while SC approach produces lowe quality results at a fraction of the computational cost.

Citation

See this article.

Installation

The easiest ways to install ConservedWaterSearch is to install it from conda-forge using conda:

conda install -c conda-forge ConservedWaterSearch

CWS can also be installed from PyPI (using pip). To install via pip use:

pip install ConservedWaterSearch

Optional visualization dependencies

nglview can be installed from PyPI (pip) or conda or when installing CWS through pip by using pip install ConservedWaterSearch[nglview]. PyMOL is the recomended visualization tool for CWS and can be installed only using conda or from source. PyMOL is not available via PyPI (pip), but can be installed from conda-forge. If PyMOL is already installed in your current python environment it can be used with CWS. If not, the free (open-source) version can be installed from conda-forge via conda (or mamba):

conda install -c conda-forge pymol-open-source

and paid (licensed version) from schrodinger channel (see here for more details) via conda (or mamba):

conda install -c conda-forge -c schrodinger pymol-bundle

Matplotlib is only required for analyzing of clustering and is useful if default values of clustering parameters need to be fine-tuned (which should be relatively rarely). You can install it from pip or conda or when installing CWS through pip by using pip install ConservedWaterSearch[matplotlib]. Both mpl and nglveiw can be installed when installing CWS by using:

pip install ConservedWaterSearch[all]

For more information see installation.

Example

The easiest way to use CWS is by calling WaterClustering class. The starting trajectory should be aligned first, and coordinates of water oxygen and hydrogens extracted. See WaterNetworkAnalysis for more information and convenience functions.

# imports
from ConservedWaterSearch.water_clustering import WaterClustering
from ConservedWaterSearch.utils import get_orientations_from_positions
# Number of snapshots
Nsnap = 20
# load some example - trajectory should be aligned prior to extraction of atom coordinates
Opos = np.loadtxt("tests/data/testdataO.dat")
Hpos = np.loadtxt("tests/data/testdataH.dat")
wc = WaterClustering(nsnaps=Nsnap)
wc.multi_stage_reclustering(*get_orientations_from_positions(Opos, Hpos))
print(wc.water_type)
# "aligned.pdb" should be the snapshot original trajectory was aligned to.
wc.visualise_pymol(aligned_protein = "aligned.pdb", output_file = "waters.pse")
https://raw.githubusercontent.com/JecaTosovic/ConservedWaterSearch/main/docs/source/figs/Results.png

Sometimes users might want to explicitly classify conserved water molecules. A simple python code can be used to classify waters into categories given an array of 3D oxygen coordinates and their related relative hydrogen orientations:

import ConservedWaterSearch.hydrogen_orientation as HO
# load some example
orientations = np.loadtxt("tests/data/conserved_sample_FCW.dat")
# Run classification
res = HO.hydrogen_orientation_analysis(
     orientations,
)
# print the water type
print(res[0][2])

For more information on preprocessing trajectory data, please refer to the WaterNetworkAnalysis.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

conservedwatersearch-0.5.1.tar.gz (33.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

conservedwatersearch-0.5.1-py3-none-any.whl (30.8 kB view details)

Uploaded Python 3

File details

Details for the file conservedwatersearch-0.5.1.tar.gz.

File metadata

  • Download URL: conservedwatersearch-0.5.1.tar.gz
  • Upload date:
  • Size: 33.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for conservedwatersearch-0.5.1.tar.gz
Algorithm Hash digest
SHA256 b3601f370f85bbbc491a4d030cf8882a8dc23e76282d033b82be50ff9caa0bfe
MD5 ce63740c2237ce0392cd9117f2454366
BLAKE2b-256 e5db05e3753c532a562eca725bc462a021f6bdd8d662573bcb4f78e36838de89

See more details on using hashes here.

File details

Details for the file conservedwatersearch-0.5.1-py3-none-any.whl.

File metadata

File hashes

Hashes for conservedwatersearch-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 09ba569e95dbf2a1759a0a5687cff800e3d06c6304d2e86425e7832680df3768
MD5 1e266a052ea6c63001e03650652a99ea
BLAKE2b-256 b4d1ebe68f13ea1444025bd1b45854f1a59d8f06af3498702f4e00ebd4a0e33e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page