Skip to main content

An early version of an educational module that is being developed to make it easier to experiment with different deep learning networks in PyTorch

Project description

Consult the module API page at

for all information related to this module, including information related to the latest changes to the code.

convo_layers_config = "1x[128,3,3,1]-MaxPool(2) 1x[16,5,5,1]-MaxPool(2)"
fc_layers_config = [-1,1024,10]

dls = DLStudio(
                  dataroot = "/home/kak/ImageDatasets/CIFAR-10/",
                  image_size = [32,32],
                  convo_layers_config = convo_layers_config,
                  fc_layers_config = fc_layers_config,
                  path_saved_model = "./saved_model",
                  momentum = 0.9,
                  learning_rate = 1e-3,
                  epochs = 2,
                  batch_size = 4,
                  classes = ('plane','car','bird','cat','deer','dog','frog','horse','ship','truck'),
                  use_gpu = True,
                  debug_train = 0,
                  debug_test = 1

configs_for_all_convo_layers = dls.parse_config_string_for_convo_layers()
convo_layers = dls.build_convo_layers2( configs_for_all_convo_layers )
fc_layers = dls.build_fc_layers()
model = dls.Net(convo_layers, fc_layers)

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for DLStudio, version 1.0.4
Filename, size File type Python version Upload date Hashes
Filename, size DLStudio-1.0.4.tar.gz (49.3 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page