Skip to main content

An educational module to make it easier to design experimental deep-learning networks in PyTorch

Project description

Consult the module API page at

for all information related to this module, including the information about the latest changes to the code.

convo_layers_config = "1x[128,3,3,1]-MaxPool(2) 1x[16,5,5,1]-MaxPool(2)"
fc_layers_config = [-1,1024,10]

dls = DLStudio(
                  dataroot = "/home/kak/ImageDatasets/CIFAR-10/",
                  image_size = [32,32],
                  convo_layers_config = convo_layers_config,
                  fc_layers_config = fc_layers_config,
                  path_saved_model = "./saved_model",
                  momentum = 0.9,
                  learning_rate = 1e-3,
                  epochs = 2,
                  batch_size = 4,
                  classes = ('plane','car','bird','cat','deer','dog','frog','horse','ship','truck'),
                  use_gpu = True,
                  debug_train = 0,
                  debug_test = 1

configs_for_all_convo_layers = dls.parse_config_string_for_convo_layers()
convo_layers = dls.build_convo_layers2( configs_for_all_convo_layers )
fc_layers = dls.build_fc_layers()
model = dls.Net(convo_layers, fc_layers)

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

DLStudio-2.2.2.tar.gz (19.6 MB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page