Skip to main content

Python library for extract property from data.

Project description

Summary

A Python library for extract property from data.

PyPI package version conda-forge package version https://img.shields.io/pypi/pyversions/DataProperty.svg Supported Python implementations CI status of Linux/macOS/Windows Test coverage CodeQL

Installation

Installation: pip

pip install DataProperty

Installation: conda

conda install -c conda-forge dataproperty

Installation: apt

sudo add-apt-repository ppa:thombashi/ppa
sudo apt update
sudo apt install python3-dataproperty

Usage

Extract property of data

e.g. Extract a float value property

>>> from dataproperty import DataProperty
>>> DataProperty(-1.1)
data=-1.1, type=REAL_NUMBER, align=right, ascii_width=4, int_digits=1, decimal_places=1, extra_len=1

e.g. Extract a int value property

>>> from dataproperty import DataProperty
>>> DataProperty(123456789)
data=123456789, type=INTEGER, align=right, ascii_width=9, int_digits=9, decimal_places=0, extra_len=0

e.g. Extract a str (ascii) value property

>>> from dataproperty import DataProperty
>>> DataProperty("sample string")
data=sample string, type=STRING, align=left, length=13, ascii_width=13, extra_len=0

e.g. Extract a str (multi-byte) value property

>>> from dataproperty import DataProperty
>>> str(DataProperty("吾輩は猫である"))
data=吾輩は猫である, type=STRING, align=left, length=7, ascii_width=14, extra_len=0

e.g. Extract a time (datetime) value property

>>> import datetime
>>> from dataproperty import DataProperty
>>> DataProperty(datetime.datetime(2017, 1, 1, 0, 0, 0))
data=2017-01-01 00:00:00, type=DATETIME, align=left, ascii_width=19, extra_len=0

e.g. Extract a bool value property

>>> from dataproperty import DataProperty
>>> DataProperty(True)
data=True, type=BOOL, align=left, ascii_width=4, extra_len=0

Extract data property for each element from a matrix

DataPropertyExtractor.to_dp_matrix method returns a matrix of DataProperty instances from a data matrix. An example data set and the result are as follows:

Sample Code:
import datetime
from dataproperty import DataPropertyExtractor

dp_extractor = DataPropertyExtractor()
dt = datetime.datetime(2017, 1, 1, 0, 0, 0)
inf = float("inf")
nan = float("nan")

dp_matrix = dp_extractor.to_dp_matrix([
    [1, 1.1, "aa", 1, 1, True, inf, nan, dt],
    [2, 2.2, "bbb", 2.2, 2.2, False, "inf", "nan", dt],
    [3, 3.33, "cccc", -3, "ccc", "true", inf, "NAN", "2017-01-01T01:23:45+0900"],
])

for row, dp_list in enumerate(dp_matrix):
    for col, dp in enumerate(dp_list):
        print("row={:d}, col={:d}, {}".format(row, col, str(dp)))
Output:
row=0, col=0, data=1, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
row=0, col=1, data=1.1, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
row=0, col=2, data=aa, type=STRING, align=left, ascii_width=2, length=2, extra_len=0
row=0, col=3, data=1, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
row=0, col=4, data=1, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
row=0, col=5, data=True, type=BOOL, align=left, ascii_width=4, extra_len=0
row=0, col=6, data=Infinity, type=INFINITY, align=left, ascii_width=8, extra_len=0
row=0, col=7, data=NaN, type=NAN, align=left, ascii_width=3, extra_len=0
row=0, col=8, data=2017-01-01 00:00:00, type=DATETIME, align=left, ascii_width=19, extra_len=0
row=1, col=0, data=2, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
row=1, col=1, data=2.2, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
row=1, col=2, data=bbb, type=STRING, align=left, ascii_width=3, length=3, extra_len=0
row=1, col=3, data=2.2, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
row=1, col=4, data=2.2, type=REAL_NUMBER, align=right, ascii_width=3, int_digits=1, decimal_places=1, extra_len=0
row=1, col=5, data=False, type=BOOL, align=left, ascii_width=5, extra_len=0
row=1, col=6, data=Infinity, type=INFINITY, align=left, ascii_width=8, extra_len=0
row=1, col=7, data=NaN, type=NAN, align=left, ascii_width=3, extra_len=0
row=1, col=8, data=2017-01-01 00:00:00, type=DATETIME, align=left, ascii_width=19, extra_len=0
row=2, col=0, data=3, type=INTEGER, align=right, ascii_width=1, int_digits=1, decimal_places=0, extra_len=0
row=2, col=1, data=3.33, type=REAL_NUMBER, align=right, ascii_width=4, int_digits=1, decimal_places=2, extra_len=0
row=2, col=2, data=cccc, type=STRING, align=left, ascii_width=4, length=4, extra_len=0
row=2, col=3, data=-3, type=INTEGER, align=right, ascii_width=2, int_digits=1, decimal_places=0, extra_len=1
row=2, col=4, data=ccc, type=STRING, align=left, ascii_width=3, length=3, extra_len=0
row=2, col=5, data=True, type=BOOL, align=left, ascii_width=4, extra_len=0
row=2, col=6, data=Infinity, type=INFINITY, align=left, ascii_width=8, extra_len=0
row=2, col=7, data=NaN, type=NAN, align=left, ascii_width=3, extra_len=0
row=2, col=8, data=2017-01-01T01:23:45+0900, type=STRING, align=left, ascii_width=24, length=24, extra_len=0

Full example source code can be found at examples/py/to_dp_matrix.py

Extract properties for each column from a matrix

DataPropertyExtractor.to_column_dp_list method returns a list of DataProperty instances from a data matrix. The list represents the properties for each column. An example data set and the result are as follows:

Example data set and result are as follows:

Sample Code:
import datetime
from dataproperty import DataPropertyExtractor

dp_extractor = DataPropertyExtractor()
dt = datetime.datetime(2017, 1, 1, 0, 0, 0)
inf = float("inf")
nan = float("nan")

data_matrix = [
    [1, 1.1,  "aa",   1,   1,     True,   inf,   nan,   dt],
    [2, 2.2,  "bbb",  2.2, 2.2,   False,  "inf", "nan", dt],
    [3, 3.33, "cccc", -3,  "ccc", "true", inf,   "NAN", "2017-01-01T01:23:45+0900"],
]

dp_extractor.headers = ["int", "float", "str", "num", "mix", "bool", "inf", "nan", "time"]
col_dp_list = dp_extractor.to_column_dp_list(dp_extractor.to_dp_matrix(dp_matrix))

for col_idx, col_dp in enumerate(col_dp_list):
    print(str(col_dp))
Output:
column=0, type=INTEGER, align=right, ascii_width=3, bit_len=2, int_digits=1, decimal_places=0
column=1, type=REAL_NUMBER, align=right, ascii_width=5, int_digits=1, decimal_places=(min=1, max=2)
column=2, type=STRING, align=left, ascii_width=4
column=3, type=REAL_NUMBER, align=right, ascii_width=4, int_digits=1, decimal_places=(min=0, max=1), extra_len=(min=0, max=1)
column=4, type=STRING, align=left, ascii_width=3, int_digits=1, decimal_places=(min=0, max=1)
column=5, type=BOOL, align=left, ascii_width=5
column=6, type=INFINITY, align=left, ascii_width=8
column=7, type=NAN, align=left, ascii_width=3
column=8, type=STRING, align=left, ascii_width=24

Full example source code can be found at examples/py/to_column_dp_list.py

Dependencies

Optional dependencies

  • loguru
    • Used for logging if the package installed

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dataproperty-1.1.0.tar.gz (42.6 kB view details)

Uploaded Source

Built Distribution

DataProperty-1.1.0-py3-none-any.whl (27.6 kB view details)

Uploaded Python 3

File details

Details for the file dataproperty-1.1.0.tar.gz.

File metadata

  • Download URL: dataproperty-1.1.0.tar.gz
  • Upload date:
  • Size: 42.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for dataproperty-1.1.0.tar.gz
Algorithm Hash digest
SHA256 b038437a4097d1a1c497695c3586ea34bea67fdd35372b9a50f30bf044d77d04
MD5 b10a82d8c35a1e69f58b921aa7d7f063
BLAKE2b-256 0b818c8b64ae873cb9014815214c07b63b12e3b18835780fb342223cfe3fe7d8

See more details on using hashes here.

Provenance

The following attestation bundles were made for dataproperty-1.1.0.tar.gz:

Publisher: publish.yml on thombashi/DataProperty

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file DataProperty-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: DataProperty-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 27.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for DataProperty-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c61fcb2e2deca35e6d1eb1f251a7f22f0dcde63e80e61f0cc18c19f42abfd25b
MD5 e94fce4402cc78de28d803e0b7dd9ce2
BLAKE2b-256 21c2e12e95e289e6081a40454199ab213139ef16a528c7c86432de545b05a23a

See more details on using hashes here.

Provenance

The following attestation bundles were made for DataProperty-1.1.0-py3-none-any.whl:

Publisher: publish.yml on thombashi/DataProperty

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page