Python library for extract property from data.
Project description
DataProperty
Summary
A Python library for extract property from data.
Installation
pip install DataProperty
Usage
Extract property of data
e.g. Extract a float value property
>>> from dataproperty import DataProperty
>>> DataProperty(-1.1)
data=-1.1, typename=REAL_NUMBER, align=right, ascii_char_width=4, integer_digits=1, decimal_places=1, additional_format_len=1
e.g. Extract a int value property
>>> from dataproperty import DataProperty
>>> DataProperty(123456789)
data=123456789, typename=INTEGER, align=right, ascii_char_width=9, integer_digits=9, decimal_places=0, additional_format_len=0
e.g. Extract a str (ascii) value property
>>> from dataproperty import DataProperty
>>> DataProperty("sample string")
data=sample string, typename=STRING, align=left, length=13, ascii_char_width=13, additional_format_len=0
e.g. Extract a str (multi-byte) value property
>>> import six
>>> from dataproperty import DataProperty
>>> six.text_type(DataProperty("吾輩は猫である"))
data=吾輩は猫である, typename=STRING, align=left, length=7, ascii_char_width=14, additional_format_len=0
e.g. Extract a time (datetime) value property
>>> import datetime
>>> from dataproperty import DataProperty
>>> DataProperty(datetime.datetime(2017, 1, 1, 0, 0, 0))
data=2017-01-01 00:00:00, typename=DATETIME, align=left, ascii_char_width=19, additional_format_len=0
e.g. Extract a bool value property
>>> from dataproperty import DataProperty
>>> DataProperty(True)
data=True, typename=BOOL, align=left, ascii_char_width=4, additional_format_len=0
Extract data property for each element from a matrix
DataPropertyExtractor.to_dp_matrix method returns a matrix of DataProperty instances from a data matrix. An example data set and the result are as follows:
- Sample Code:
import datetime from dataproperty import DataPropertyExtractor dp_extractor = DataPropertyExtractor() dt = datetime.datetime(2017, 1, 1, 0, 0, 0) inf = float("inf") nan = float("nan") dp_matrix = dp_extractor.to_dp_matrix([ [1, 1.1, "aa", 1, 1, True, inf, nan, dt], [2, 2.2, "bbb", 2.2, 2.2, False, "inf", "nan", dt], [3, 3.33, "cccc", -3, "ccc", "true", inf, "NAN", "2017-01-01T01:23:45+0900"], ]) for row, dp_list in enumerate(dp_matrix): for col, dp in enumerate(dp_list): print("row={:d}, col={:d}, {}".format(row, col, str(dp)))
- Output:
row=0, col=0, data=1, typename=INTEGER, align=right, ascii_char_width=1, integer_digits=1, decimal_places=0, additional_format_len=0 row=0, col=1, data=1.1, typename=REAL_NUMBER, align=right, ascii_char_width=3, integer_digits=1, decimal_places=1, additional_format_len=0 row=0, col=2, data=aa, typename=STRING, align=left, ascii_char_width=2, length=2, additional_format_len=0 row=0, col=3, data=1, typename=INTEGER, align=right, ascii_char_width=1, integer_digits=1, decimal_places=0, additional_format_len=0 row=0, col=4, data=1, typename=INTEGER, align=right, ascii_char_width=1, integer_digits=1, decimal_places=0, additional_format_len=0 row=0, col=5, data=True, typename=BOOL, align=left, ascii_char_width=4, additional_format_len=0 row=0, col=6, data=Infinity, typename=INFINITY, align=left, ascii_char_width=8, additional_format_len=0 row=0, col=7, data=NaN, typename=NAN, align=left, ascii_char_width=3, additional_format_len=0 row=0, col=8, data=2017-01-01 00:00:00, typename=DATETIME, align=left, ascii_char_width=19, additional_format_len=0 row=1, col=0, data=2, typename=INTEGER, align=right, ascii_char_width=1, integer_digits=1, decimal_places=0, additional_format_len=0 row=1, col=1, data=2.2, typename=REAL_NUMBER, align=right, ascii_char_width=3, integer_digits=1, decimal_places=1, additional_format_len=0 row=1, col=2, data=bbb, typename=STRING, align=left, ascii_char_width=3, length=3, additional_format_len=0 row=1, col=3, data=2.2, typename=REAL_NUMBER, align=right, ascii_char_width=3, integer_digits=1, decimal_places=1, additional_format_len=0 row=1, col=4, data=2.2, typename=REAL_NUMBER, align=right, ascii_char_width=3, integer_digits=1, decimal_places=1, additional_format_len=0 row=1, col=5, data=False, typename=BOOL, align=left, ascii_char_width=5, additional_format_len=0 row=1, col=6, data=Infinity, typename=INFINITY, align=left, ascii_char_width=8, additional_format_len=0 row=1, col=7, data=NaN, typename=NAN, align=left, ascii_char_width=3, additional_format_len=0 row=1, col=8, data=2017-01-01 00:00:00, typename=DATETIME, align=left, ascii_char_width=19, additional_format_len=0 row=2, col=0, data=3, typename=INTEGER, align=right, ascii_char_width=1, integer_digits=1, decimal_places=0, additional_format_len=0 row=2, col=1, data=3.33, typename=REAL_NUMBER, align=right, ascii_char_width=4, integer_digits=1, decimal_places=2, additional_format_len=0 row=2, col=2, data=cccc, typename=STRING, align=left, ascii_char_width=4, length=4, additional_format_len=0 row=2, col=3, data=-3, typename=INTEGER, align=right, ascii_char_width=2, integer_digits=1, decimal_places=0, additional_format_len=1 row=2, col=4, data=ccc, typename=STRING, align=left, ascii_char_width=3, length=3, additional_format_len=0 row=2, col=5, data=True, typename=BOOL, align=left, ascii_char_width=4, additional_format_len=0 row=2, col=6, data=Infinity, typename=INFINITY, align=left, ascii_char_width=8, additional_format_len=0 row=2, col=7, data=NaN, typename=NAN, align=left, ascii_char_width=3, additional_format_len=0 row=2, col=8, data=2017-01-01T01:23:45+0900, typename=STRING, align=left, ascii_char_width=24, length=24, additional_format_len=0
Full example source code can be found at examples/py/to_dp_matrix.py
Extract property for each column from a matrix
DataPropertyExtractor.to_column_dp_list method returns a list of DataProperty instances from a data matrix. The list represents the properties for each column. An example data set and the result are as follows:
Example data set and result are as follows:
- Sample Code:
import datetime from dataproperty import DataPropertyExtractor dp_extractor = DataPropertyExtractor() dt = datetime.datetime(2017, 1, 1, 0, 0, 0) inf = float("inf") nan = float("nan") data_matrix = [ [1, 1.1, "aa", 1, 1, True, inf, nan, dt], [2, 2.2, "bbb", 2.2, 2.2, False, "inf", "nan", dt], [3, 3.33, "cccc", -3, "ccc", "true", inf, "NAN", "2017-01-01T01:23:45+0900"], ] dp_extractor.header_list = ["int", "float", "str", "num", "mix", "bool", "inf", "nan", "time"] col_dp_list = dp_extractor.to_column_dp_list(dp_extractor.to_dp_matrix(dp_matrix)) for col_idx, col_dp in enumerate(col_dp_list): print(str(col_dp))
- Output:
column=0, typename=INTEGER, align=right, ascii_char_width=3, bit_len=2, integer_digits=1, decimal_places=0 column=1, typename=REAL_NUMBER, align=right, ascii_char_width=5, integer_digits=1, decimal_places=(min=1, max=2) column=2, typename=STRING, align=left, ascii_char_width=4 column=3, typename=REAL_NUMBER, align=right, ascii_char_width=4, integer_digits=1, decimal_places=(min=0, max=1), additional_format_len=(min=0, max=1) column=4, typename=STRING, align=left, ascii_char_width=3, integer_digits=1, decimal_places=(min=0, max=1) column=5, typename=BOOL, align=left, ascii_char_width=5 column=6, typename=INFINITY, align=left, ascii_char_width=8 column=7, typename=NAN, align=left, ascii_char_width=3 column=8, typename=STRING, align=left, ascii_char_width=24
Full example source code can be found at examples/py/to_column_dp_list.py
Dependencies
Python 2.7+ or 3.4+
Test dependencies
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for DataProperty-0.30.6-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cdc0ce3a04d4d576a2ffcd691b7002a0482a2feb7e484afa7234a6625e646d62 |
|
MD5 | 8bb8bc5786db692baad4eb65f15a443e |
|
BLAKE2b-256 | 592593c9ec684d52c5dd7ce3ca96e7c1e497e9b8215d12818fc9402d85731dae |