Skip to main content

Deep Learning toolbox for WSI (digital histopatology) analysis

Project description

Codacy Badge PyPI version


A software application built on top of openslide for viewing whole slide images (WSI) and performing pathological analysis


If you find this reference implementation useful in your research, please consider citing:

  title={A Generalized Deep Learning Framework for Whole-Slide Image Segmentation and Analysis},
  author={Khened, Mahendra and Kori, Avinash and Rajkumar, Haran and Srinivasan, Balaji and Krishnamurthi, Ganapathy},
  journal={arXiv preprint arXiv:2001.00258},


  • Responsive WSI image viewer
  • State of the art cancer AI pipeline to segment and display the cancerous tissue regions

Application Overview


Online Demo


Running of the AI pipeline requires a GPU and several deep learning modules. However, you can run just the UI as well.

Just the UI


  • openslide
  • flask

The following command will install only the dependencies listed above.

pip install DigiPathAI

Entire AI pipeline


  • pytorch
  • torchvision
  • opencv-python
  • imgaug
  • matplotlib
  • scikit-learn
  • scikit-image
  • tensorflow-gpu >=1.14,<2
  • pydensecrf
  • pandas
  • wget

The following command will install the dependencies mentioned

pip install "DigiPathAI[gpu]"

Both installation methods install the same package, just different dependencies. Even if you had installed using the earlier command, you can install the rest of the dependencies manually.


Local server

Traverse to the directory containing the openslide images and run the following command.

digipathai <host: localhost (default)> <port: 8080 (default)>

Python API usage

The application also has an API which can be used within python to perform the segmentation.

from DigiPathAI.Segmentation import getSegmentation

prediction = getSegmentation(img_path, 
			patch_size  = 256, 
			stride_size = 128,
			batch_size  = 32,
			quick       = True,
			tta_list    = None,
			crf         = False,
			save_path   = None,
			status      = None)


Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

DigiPathAI-0.1.5.tar.gz (2.5 MB view hashes)

Uploaded Source

Built Distribution

DigiPathAI-0.1.5-py3-none-any.whl (2.6 MB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page