Skip to main content

Python package for the Energy Flow suite of particle physics tools

Project description

EnergyFlow

Build Status Binder

EnergyFlow is a Python package that computes Energy Flow Polynomials (EFPs) as defined in Ref. [1], implements Energy Flow Networks (EFNs) and Particle Flow Networks (PFNs) as defined in Ref. [2], computes Energy Mover's Distances as defined in Ref. [3], and provides access to some particle physics datasets hosted on Zenodo including the jet datasets in MOD HDF5 format used in Ref. [4].

Installation

To install EnergyFlow with pip, simply execute:

pip3 install energyflow

Documentation

The documentation is maintained at https://energyflow.network.

References

[1] P. T. Komiske, E. M. Metodiev, and J. Thaler, Energy Flow Polynomials: A complete linear basis for jet substructure, JHEP 04 (2018) 013 [1712.07124].

[2] P. T. Komiske, E. M. Metodiev, and J. Thaler, Energy Flow Networks: Deep Sets for Particle Jets, JHEP 01 (2019) 121 [1810.05165].

[3] P. T. Komiske, E. M. Metodiev, and J. Thaler, The Metric Space of Collider Events, Phys. Rev. Lett. 123 (2019) 041801 [1902.02346].

[4] P. T. Komiske, R. Mastandrea, E. M. Metodiev, P. Naik, and J. Thaler, Exploring the Space of Jets with CMS Open Data, Phys. Rev. D 101 (2020) 034009 [1908.08542].

[5] P. T. Komiske, E. M. Metodiev, and J. Thaler, Cutting Multiparticle Correlators Down to Size, Phys. Rev. D 101 (2020) 036019 [1911.04491].

[6] A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman, and J. Thaler, OmniFold: A Method to Simultaneously Unfold All Observables, Phys. Rev. Lett. 124 (2020) 182001 [1911.09107].

[7] P. T. Komiske, E. M. Metodiev, and J. Thaler, The Hidden Geometry of Particle Collisions, JHEP 07 (2020) 006 [2004.04159].

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

EnergyFlow-1.3.2.tar.gz (687.5 kB view hashes)

Uploaded source

Built Distribution

EnergyFlow-1.3.2-py2.py3-none-any.whl (700.5 kB view hashes)

Uploaded py2 py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page