Fuzzy Deep Neural Network (FDNN)
Project description
FDNN
A lightweight implementation of a Fuzzy Deep Neural Network (FDNN) in TensorFlow.
Installation
pip install FDNN
Usage
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import FDNN as fd
# Load dataset
df = pd.read_csv("MAINDiagnostics.csv")
df["Gender"] = df["Gender"].map({"MALE": 1, "FEMALE": 0})
df = df.drop(columns=["IDFILENAME", "FileName", "Beat"], errors='ignore')
# Create binary target
normal_group = ["SR", "SB", "ST", "SI", "SAAWR"]
arrhythmia_group = ["AFIB", "AF", "SVT", "AT", "AVNRT", "AVRT"]
df["Rhythm_Binary"] = df["Rhythm"].apply(lambda x: 0 if x in normal_group else (1 if x in arrhythmia_group else None))
df = df.dropna(subset=["Rhythm_Binary"])
y = df["Rhythm_Binary"].astype(int)
X = df.drop(columns=["Rhythm", "Rhythm_Binary"], errors='ignore')
# Save feature names
feature_names = X.columns.tolist()
# Scale features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Train/test split
X_train, X_val, y_train, y_val = train_test_split(X_scaled, y, test_size=0.2, random_state=42, stratify=y)
input_dim = X_train.shape[1]
# Train the model
model = fd.build_fdnn(input_dim)
model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=20, batch_size=32, verbose=1)
You can find "MAINDiagnostics.csv" here.
License
MIT
Authors
- Arman Daliri
- Nora Mahdavi
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
fdnn-0.1.0-py3-none-any.whl
(3.8 kB
view details)
File details
Details for the file fdnn-0.1.0-py3-none-any.whl.
File metadata
- Download URL: fdnn-0.1.0-py3-none-any.whl
- Upload date:
- Size: 3.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.13.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a6a1649c4f23582da630da426b730f5e6f8409bcc47e287745a32b731548f04f
|
|
| MD5 |
e26bc1bf2c17fd9b02ab13173f561e57
|
|
| BLAKE2b-256 |
91b6a04ba1d5dd63fea81acd69c2a0ddb86f079e03c3a58a8e6af2463659c2ba
|