Skip to main content

Financial Python. Using python to do stock analysis.

Project description

finpy
=====
Financial Python
=====
To install
=====
Requirement: Python 3

pip install finpy

You can also download the window install package if you're using windows.
Introduction
=====

I plan to expand the capabilities. Please let me know if you have
any suggestions.
You can reach me at blacksburg98 (at) yahoo dot com

I've tried to use docstring as much as possible, so you can try these commands
in python shell to get more information.

::
from finpy.utils import get_tickdata
from finpy.equity import Equity
help(Equity)
from finpy.portfolio import Portfolio
help(Portfolio)

Please go to https://github.com/blacksburg98/finpy to file a issue if you have
any problems.

Recommend:
This will be the area where the downloaded stock data are stored.

setenv FINPYDATA ~/stock_data

Tutorial 1
=====
"""
Tutorial 1
Load stock data and print
"""
import matplotlib
matplotlib.use('Agg') # fix for matplotlib under multiprocessing
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import datetime as dt
from finpy.utils import get_tickdata

import finpy.fpdateutil as du
if __name__ == '__main__':
dt_timeofday = dt.timedelta(hours=16)
dt_start = dt.datetime(2010, 1, 1)
dt_end = dt.datetime(2010, 12, 31)
ls_symbols = ['AAPL','GOOG', 'IBM', 'MSFT']
ldt_timestamps = du.getNYSEdays(dt_start, dt_end, dt_timeofday)
all_stocks = get_tickdata(ls_symbols=ls_symbols, ldt_timestamps=ldt_timestamps)
fig = plt.figure()
ax = fig.add_subplot(111)
for tick in ls_symbols:
ax.plot(ldt_timestamps, all_stocks[tick].normalized())
legend = ls_symbols
ax.legend(legend, loc=2)
fig.autofmt_xdate()
svg_file = 'tutorial1.pdf'
fig.savefig(svg_file)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

FinPy-0.2.004.zip (88.8 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

FinPy-0.2.004.win-amd64.exe (309.2 kB view details)

Uploaded Source

FinPy-0.2.004-py3.4.egg (137.1 kB view details)

Uploaded Egg

File details

Details for the file FinPy-0.2.004.zip.

File metadata

  • Download URL: FinPy-0.2.004.zip
  • Upload date:
  • Size: 88.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for FinPy-0.2.004.zip
Algorithm Hash digest
SHA256 34b1836dc1692c5b7d24abbe4264537bdcd77628335325c230e86387cdac935f
MD5 b4a4fb2e0d4c42b1ecbaa874a9ea9573
BLAKE2b-256 cba03e1edd203d11e8b08b09949fa08ec4d8253adbe09d46d32c24f309ddc248

See more details on using hashes here.

File details

Details for the file FinPy-0.2.004.win-amd64.exe.

File metadata

  • Download URL: FinPy-0.2.004.win-amd64.exe
  • Upload date:
  • Size: 309.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for FinPy-0.2.004.win-amd64.exe
Algorithm Hash digest
SHA256 d041a5e28065437a766c1fbe48473c73f29a4aabcc666ba552c59ac99a5c8fe3
MD5 45b4961413ea8493c52e7e96f8d0f31c
BLAKE2b-256 69d1539b6146cdf958a949844dc5625499a87d5134366eb8ad7d3772ba53f6b2

See more details on using hashes here.

File details

Details for the file FinPy-0.2.004-py3.4.egg.

File metadata

  • Download URL: FinPy-0.2.004-py3.4.egg
  • Upload date:
  • Size: 137.1 kB
  • Tags: Egg
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for FinPy-0.2.004-py3.4.egg
Algorithm Hash digest
SHA256 e7e7d2aef1ed5ec7a739ad2f967456fab30030745581d6d77b77251ec3077f3d
MD5 a732645cf8a9213a09fb2a470c46e6de
BLAKE2b-256 e4f5fec00b2e2fb66cd1fb558a00123b80c1fcac33850e693489c7db613d1e14

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page