Custom Random Value Generators
Project description
Fortuna: The Random Value Toolkit for Python3
© 2020 Robert Sharp, all rights reserved.
Fortuna's main goal is to provide a quick and easy way to build custom random functors for your data. Fortuna also offers a variety of high-performance random number functions.
The core functionality of Fortuna is based on the Storm RNG Engine. While Storm has a high quality, hardware seeded random engine - it is not appropriate for cryptography of any kind. Fortuna is meant for games, data science, A.I. and experimental programming, not security.
Quick Install $ pip install Fortuna
Installation may require the following:
- Python 3.6 or later with dev tools (setuptools, pip, etc.)
- Cython: Bridge from C/C++ to Python.
- Modern C++17 Compiler and Standard Library.
Sister Projects (included but documented separately):
- RNG: Python3 API for the C++ Random Library. https://pypi.org/project/RNG/
- Pyewacket: Drop-in replacement for Python3 random module. https://pypi.org/project/Pyewacket/
- MonkeyScope: Framework for testing non-deterministic functors. https://pypi.org/project/MonkeyScope/
- Storm: Core C++ Engine. https://github.com/BrokenShell/Storm
Table of Contents:
- Numeric Limits
- Random Value Classes
RandomValue(Iterable) -> Callable -> Value
TruffleShuffle(Iterable) -> Callable -> Value
QuantumMonty(Iterable) -> Callable -> Value
CumulativeWeightedChoice(Iterable[Tuple[int, Any]]) -> Callable -> Value
RelativeWeightedChoice(Iterable[Tuple[int, Any]]) -> Callable -> Value
FlexCat(Dict[str, Iterable[Any]]) -> Callable -> Value
- Random Value Functions
random_value(data: Sequence[Any]) -> Any
cumulative_weighted_choice(Sequence[Tuple[int, Any]]) -> Any
truffle_shuffle(data: Iterable[Any]) -> Callable -> Any
- Random Integer Functions
random_below(Integer) -> Integer
random_int(Integer, Integer) -> Integer
random_range(Integer, Integer, Integer) -> Integer
d(Integer) -> Integer
dice(Integer, Integer) -> Integer
plus_or_minus(Integer) -> Integer
plus_or_minus_linear(Integer) -> Integer
plus_or_minus_gauss(Integer) -> Integer
- Random Index Functions
- ZeroCool Specification:
f(N) -> [0, N)
orf(-N) -> [-N, 0)
random_index(Integer) -> Integer
front_gauss(Integer) -> Integer
middle_gauss(Integer) -> Integer
back_gauss(Integer) -> Integer
quantum_gauss(Integer) -> Integer
front_poisson(Integer) -> Integer
middle_poisson(Integer) -> Integer
back_poisson(Integer) -> Integer
quantum_poisson(Integer) -> Integer
front_linear(Integer) -> Integer
middle_linear(Integer) -> Integer
back_linear(Integer) -> Integer
quantum_linear(Integer) -> Integer
quantum_monty(Integer) -> Integer
- ZeroCool Specification:
- Random Float Functions
canonical() -> Float
random_float(Float, Float) -> Float
triangular(Float, Float, Float) -> Float
- Random Boolean Functions
percent_true(Float) -> Boolean
- Inplace Shuffle Algorithms
shuffle(List[Any]) -> None
knuth_a(List[Any]) -> None
fisher_yates(List[Any]) -> None
- Utilities
flatten(Object, *args, Boolean, **kwargs) -> Object
smart_clamp(Integer, Integer, Integer) -> Integer
- Experimental
MultiChoice(str, Iterable[str], str, bool, str) -> Callable -> str
- Development Log
- Test Suite Output
- Legal Information
Numeric Limits:
- Integer: 64 bit signed integer.
- Range: ±9223372036854775807, approximately ±9.2 billion billion
- Float: 64 bit floating point.
- Range: ±1.7976931348623157e+308
- Epsilon Delta: 5e-305 to 5e-324, platform dependent
Random Value Engines
Fortuna.RandomValue
Fortuna.RandomValue(collection: Iterable[Any], zero_cool=random_index, flat=True) -> Callable -> Value
Random Value Engine Class that supports dependency injection.
- @param collection :: Iterable of Values. Tuple recommended.
- @param zero_cool :: Optional ZeroCool Callable, kwarg only. Default = random_index(). This function must follow the ZeroCool Spec.
- @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
- @return :: Callable Object.
Callable(*args, **kwargs) -> Value
- @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
- @return Value or Value(*args, **kwargs) if the value itself is callable. This is recursive.
RandomValue Dependency Injection: Rare Apples Example
RandomValue supports dependency injection, it is the only Fortuna class to do so. The injected functor must follow the ZeroCool Specification: f(x: int) -> int in [0, x) with any distribution. Many ZeroCool functions are provided, in this example we'll see front_linear and back_linear used together.
In reality, if one of the builtin ZeroCool functions is required, it is recommended to employ QuantumMonty rather than RandomValue. QuantumMonty offers the same behaviors with less overhead. RandomValue is specifically designed for custom dependency injection.
from Fortuna import RandomValue, front_linear, back_linear
# Data Setup
random_apple = RandomValue((
"Delicious",
"Empire",
"Granny Smith",
"Honey Crisp",
"Macintosh",
), zero_cool=front_linear)
random_fruit = RandomValue((
lambda: f"Apple, {random_apple()}",
"Banana",
"Cherry",
"Grapes",
"Orange",
), zero_cool=back_linear)
# Usage
print(random_fruit())
# prints a random fruit with the correct distribution
QuantumMonty: Rare Apples Example
Same as above but with QuantumMonty.
from Fortuna import QuantumMonty
# Data Setup
random_apple = QuantumMonty((
"Delicious",
"Empire",
"Granny Smith",
"Honey Crisp",
"Macintosh",
)).front_linear
random_fruit = QuantumMonty((
lambda: f"Apple, {random_apple()}",
"Banana",
"Cherry",
"Grapes",
"Orange",
)).back_linear
# Usage
print(random_fruit())
# prints a random fruit with the correct distribution
RandomValue with Auto Flattening
Auto Flattening work with all random generator classes in Fortuna.
from Fortuna import RandomValue
auto_flat = RandomValue([lambda: 1, lambda: 2, lambda: 3])
print(auto_flat()) # will print the value 1, 2 or 3.
# Note: the lambda will not be called until call time and stays dynamic for the life of the object.
auto_flat_with = RandomValue([lambda x: x, lambda x: x + 1, lambda x: x + 2])
print(auto_flat_with(2)) # will print the value 2, 3 or 4
# Note: if this is called with no args it will simply return the lambda in an uncalled state.
un_flat = RandomValue([lambda: 1, lambda: 2, lambda: 3], flat=False)
print(un_flat()()) # will print the value 1, 2 or 3,
# mind the double-double parenthesis, they are required to manually unpack the lambdas
auto_un_flat = RandomValue([lambda x: x, lambda x: x + 1, lambda x: x + 2], flat=False)
# Note: flat=False is not required here because the lambdas can not be called without input x satisfied.
# It is recommended to specify flat=False if non-flat output is intended.
print(auto_un_flat()(1)) # will print the value 1, 2 or 3, mind the double-double parenthesis.
Mixing Static Objects with Callable Objects
Auto Flattening work with all random generator classes in Fortuna.
from Fortuna import RandomValue
""" With automatic flattening active, `lambda() -> int` can be treated as an `int`. """
mixed_flat = RandomValue([1, 2, lambda: 3])
print(mixed_flat()) # will print 1, 2 or 3
""" Mixed Anti-pattern """
mixed_un_flat = RandomValue([1, 2, lambda: 3], flat=False) # this is not recommended.
print(mixed_flat()) # will print 1, 2 or "Function <lambda at some_address>"
# This pattern is not recommended because you wont know the nature of what you get back.
# This is almost always not what you want, and it can give rise to messy logic in other areas of your code.
Dynamic Strings
To successfully express a dynamic string, and keep it dynamic for the duration of the program, at least one level of indirection is required. Without a lambda - the f-string would collapse into a static string too soon. This works with all random generator classes in Fortuna.
from Fortuna import RandomValue, d
# d() is a simple dice function, d(n) -> [1, n] flat uniform distribution.
dynamic_string = RandomValue((
# while the probability of all A == all B == all C, individual probabilities of each possible string will differ based on the number of possible outputs of each category.
lambda: f"A{d(2)}", # -> A1 - A2, each are twice as likely as any particular B, and three times as likely as any C.
lambda: f"B{d(4)}", # -> B1 - B4, each are half as likely as any particular A, and 3/2 as likely as any C.
lambda: f"C{d(6)}", # -> C1 - C6, each are 1/3 as likely as any particular A and 2/3 as likely of any B.
))
print(dynamic_string()) # prints a random dynamic string, generated at call time.
Nesting Dolls
This works with all random generator classes in Fortuna.
from Fortuna import RandomValue
# Data Setup
nesting_dolls = RandomValue((
RandomValue(("A", "B", "C", "D", "E")),
RandomValue(("F", "G", "H", "I", "J")),
RandomValue(("K", "L", "M", "N", "O")),
RandomValue(("P", "Q", "R", "S", "T")),
))
# Usage
print(nesting_dolls())
# prints one of the letters A-T, flat uniform distribution of each category and within each category.
TruffleShuffle
Fortuna.TruffleShuffle(collection: Iterable[Any], flat=True) -> Callable -> Value
- @param collection :: Iterable of Values. Set recommended but not required.
- @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
- @return :: Callable Object.
Callable(*args, **kwargs) -> Value
- @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
- @return :: Random value from the collection with a Wide Uniform Distribution.
Wide Uniform Distribution: "Wide" refers to the average distance between consecutive occurrences of the same value. The average width of the output distribution will naturally scale up with the size of the collection. The goal of this type of distribution is to keep the output sequence free of clumps or streaks of the same value, while maintaining randomness and uniform probability. This is not the same as a flat uniform distribution. The two distributions over time will be statistically similar for any given set, but the repetitiveness of the output sequence will be very different.
TruffleShuffle, Basic Use
from Fortuna import TruffleShuffle
# Data Setup
list_of_values = { 1, 2, 3, 4, 5, 6 }
truffle_shuffle = TruffleShuffle(list_of_values)
# Usage
print(truffle_shuffle()) # this will print one of the numbers 1-6,
# repeated calls will produce a wide distribution.
QuantumMonty
Fortuna.QuantumMonty(collection: Iterable[Any], flat=True) -> Callable -> Value
- @param collection :: Iterable of Values. Tuple recommended.
- @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
- @return :: Callable Object with Monty Methods for producing various distributions of the data.
- @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
- @return :: Random value from the data. The instance will produce random values from the list using the selected distribution model or "monty". The default monty is the Quantum Monty Algorithm.
from Fortuna import QuantumMonty
# Data Setup
list_of_values = [1, 2, 3, 4, 5, 6]
monty = QuantumMonty(list_of_values)
# Usage
print(monty()) # prints a random value from the list_of_values.
# uses the default Quantum Monty Algorithm.
print(monty.flat_uniform()) # prints a random value from the list_of_values.
# uses the "flat_uniform" monty.
# equivalent to random.choice(list_of_values).
The QuantumMonty class represents a diverse collection of strategies for producing random values from a sequence where the output distribution is based on the method you choose. Generally speaking, each value in the sequence will have a probability that is based on its position in the sequence. For example: the "front" monty produces random values where the beginning of the sequence is geometrically more common than the back. Given enough samples the "front" monty will always converge to a 45 degree slope down for any list of unique values.
There are three primary method families: linear, gaussian, and poisson. Each family has three base methods; 'front', 'middle', 'back', plus a 'quantum' method that incorporates all three base methods. The quantum algorithms for each family produce distributions by overlapping the probability waves of the other methods in their family. The Quantum Monty Algorithm incorporates all nine base methods.
import Fortuna
# Data Setup
monty = Fortuna.QuantumMonty(
["Alpha", "Beta", "Delta", "Eta", "Gamma", "Kappa", "Zeta"]
)
# Usage
# Each of the following methods will return a random value from the sequence.
# Each method has its own unique distribution model.
""" Flat Base Case """
monty.flat_uniform() # Flat Uniform Distribution
""" Geometric Positional """
monty.front_linear() # Linear Descending, Triangle
monty.middle_linear() # Linear Median Peak, Equilateral Triangle
monty.back_linear() # Linear Ascending, Triangle
monty.quantum_linear() # Linear Overlay, 3-way monty.
""" Gaussian Positional """
monty.front_gauss() # Front Gamma
monty.middle_gauss() # Scaled Gaussian
monty.back_gauss() # Reversed Gamma
monty.quantum_gauss() # Gaussian Overlay, 3-way monty.
""" Poisson Positional """
monty.front_poisson() # 1/4 Mean Poisson
monty.middle_poisson() # 1/2 Mean Poisson
monty.back_poisson() # 3/4 Mean Poisson
monty.quantum_poisson() # Poisson Overlay, 3-way monty.
""" Quantum Monty Algorithm """
monty() # Quantum Monty Algorithm, 9-way monty.
monty.quantum_monty() # same as above
Weighted Choice: Base Class
Weighted Choice offers two strategies for selecting random values from a sequence where programmable rarity is desired. Both produce a custom distribution of values based on the weights of the values.
The choice to use one strategy over the other is purely about which one suits you or your data best. Relative weights are easier to understand at a glance. However, many RPG Treasure Tables map rather nicely to a cumulative weighted strategy.
Cumulative Weighted Choice
Fortuna.CumulativeWeightedChoice(weighted_table: Iterable[Tuple[int, Any]], flat=True) -> Callable -> Value
- @param weighted_table :: Table of weighted pairs. Tuple of Tuples recommended.
- @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
- @return :: Callable Instance
- @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
- @return :: Random value from the weighted_table, distribution based on the weights of the values.
Note: Logic dictates Cumulative Weights must be unique!
from Fortuna import CumulativeWeightedChoice
# Data Setup
cum_weighted_choice = CumulativeWeightedChoice((
(7, "Apple"),
(11, "Banana"),
(13, "Cherry"),
(23, "Grape"),
(26, "Lime"),
(30, "Orange"), # same as relative weight 4 because 30 - 26 = 4
))
# Usage
print(cum_weighted_choice()) # prints a weighted random value
Relative Weighted Choice
Fortuna.RelativeWeightedChoice(weighted_table: Iterable[Tuple[int, Any]]) -> Callable -> Value
- @param weighted_table :: Table of weighted pairs. Tuple of Tuples recommended.
- @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
- @return :: Callable Instance
- @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
- @return :: Random value from the weighted_table, distribution based on the weights of the values.
from Fortuna import RelativeWeightedChoice
# Data
population = ["Apple", "Banana", "Cherry", "Grape", "Lime", "Orange"]
rel_weights = [7, 4, 2, 10, 3, 4]
# Setup
rel_weighted_choice = RelativeWeightedChoice(zip(rel_weights, population))
# Usage
print(rel_weighted_choice()) # prints a weighted random value
FlexCat
Fortuna.FlexCat(matrix_data: Matrix, key_bias="front_linear", val_bias="truffle_shuffle", flat=True) -> Callable -> Value
- @param matrix_data :: Dictionary of Sequences.
Dict[str, Iterable[Any]]
- @parm key_bias :: Default is "front_linear". String indicating the name of the algorithm to use for random key selection.
- @parm val_bias :: Default is "truffle_shuffle". String indicating the name of the algorithm to use for random value selection.
- @param flat :: Bool. Default is True. Option to automatically flatten callable values with lazy evaluation.
- @return :: Callable Instance
- @param cat_key :: Optional String. Default is None. Key selection by name. If specified, this will override the key_bias for a single call.
- @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
- @return :: Value. Returns a random value generated with val_bias from a random sequence generated with key_bias.
FlexCat is like a multi dimensional QuantumMonty.
The constructor takes two optional keyword arguments to specify the algorithms to be used to make random selections. The algorithm specified for selecting a key need not be the same as the one for selecting values. An optional key may be provided at call time to bypass the random key selection. Keys passed in this way must exactly match a key in the Matrix.
By default, FlexCat will use key_bias="front_linear" and val_bias="truffle_shuffle", this will make the top of the data structure geometrically more common than the bottom and it will truffle shuffle the sequence values. This config is known as TopCat, it produces a descending-step, micro-shuffled distribution sequence. Many other combinations are available.
Algorithmic Options: See QuantumMonty & TruffleShuffle for more details.
- "front_linear", Linear Descending
- "middle_linear", Linear Median Peak
- "back_linear", Linear Ascending
- "quantum_linear", Linear 3-way monty
- "front_gauss", Gamma Descending
- "middle_gauss", Scaled Gaussian
- "back_gauss", Gamma Ascending
- "quantum_gauss", Gaussian 3-way monty
- "front_poisson", Front 1/3 Mean Poisson
- "middle_poisson", Middle Mean Poisson
- "back_poisson", Back 1/3 Mean Poisson
- "quantum_poisson", Poisson 3-way monty
- "quantum_monty", Quantum Monty Algorithm, 9-way monty
- "flat_uniform", uniform flat distribution
- "truffle_shuffle", TruffleShuffle wide uniform distribution
from Fortuna import FlexCat, d
# |- Collection Generator, does not require lambda.
# Data |
matrix_data = {# $ |- Dynamic Value Expression
"Cat_A": (f"A{i}" for i in range(1, 6)), # | Lazy, 1 of 4 possibilities
"Cat_B": ("B1", "B2", "B3", "B4", "B5"), # $ lambda required for dynamic eval
"Cat_C": ("C1", "C2", "C3", f"C4.{d(2)}", lambda: f"C5.{d(4)}"),
}# $ $ $ $ $
# | | |- Value | |- Fair die method: d4
# | | |
# | |- Collection |- Static Value Expression
# | | Eager, 1 or 2 permanently
# |- Collection Key, "cat_key"
# |- Collection Algorithm |- Value Algorithm
# Setup $ y-axis $ x-axis
flex_cat = FlexCat(matrix_data, key_bias="front_linear", val_bias="flat_uniform")
# $ $ $
# | | |- Dictionary of Collections
# | |
# | |- FlexCat Constructor
# |
# |- Callable Random Value Generator
# Usage
flex_cat() # returns a Value from the Matrix.
flex_cat(cat_key="Cat_B") # returns a Value specifically from the "Cat_B" Collection.
Random Value Functions
Fortuna.random_value(Sequence[Any]) -> Any
Essentially the same as Random.choice()
- @param data :: Sequence of Values
- @return :: Random value from the sequence. Flat uniform distribution.
Fortuna.cumulative_weighted_choice(weighted_table: Sequence[Tuple[int, Any]]) -> Any
Similar to Random.choices()
- @param weighted_table :: Sequence of weighted value pairs.
[(w1, v1), (w2, v2)...]
- @return :: Returns a random value. Distribution depends on weights.
Random Integer Functions
Fortuna.random_below(limit: int) -> int
- @param limit :: Any Integer
- @return :: Returns a random integer in the range...
random_below(N) -> [0, N)
for positive limit.random_below(N) -> (N, 0]
for negative limit.random_below(0) -> 0
Always returns zero when limit is zero
- Flat uniform distribution.
Fortuna.random_int(left_limit: int, right_limit: int) -> int
Essentially the same as Random.randint()
- @param left_limit :: Any Integer
- @param right_limit :: Any Integer
- @return :: Returns a random integer in the range [left_limit, right_limit]
random_int(1, 10) -> [1, 10]
random_int(10, 1) -> [1, 10]
same as above.random_int(A, B)
Always returns A when A == B
- Flat uniform distribution.
Fortuna.random_range(start: int, stop: int = 0, step: int = 1) -> int
Essentially the same as Random.randrange()
- @param start :: Required starting point.
random_range(0) -> [0]
random_range(10) -> [0, 10)
from 0 to 9. Same asFortuna.random_index(N)
random_range(-10) -> [-10, 0)
from -10 to -1. Same asFortuna.random_index(-N)
- @param stop :: Zero by default. Optional range bound. With at least two arguments, the order of the first two does not matter.
random_range(0, 0) -> [0]
random_range(0, 10) -> [0, 10)
from 0 to 9.random_range(10, 0) -> [0, 10)
same as above.
- @param step :: One by default. Optional step size.
random_range(0, 0, 0) -> [0]
random_range(0, 10, 2) -> [0, 10) by 2
even numbers from 0 to 8.- The sign of the step parameter controls the phase of the output. Negative stepping will flip the inclusively.
random_range(0, 10, -1) -> (0, 10]
starts at 10 and ranges down to 1.random_range(10, 0, -1) -> (0, 10]
same as above.random_range(10, 10, 0) -> [10]
step size or range size of zero always returns the first parameter.
- @return :: Returns a random integer in the range [A, B) by increments of C.
- Flat uniform distribution.
Fortuna.d(sides: int) -> int
Represents a single roll of a given size die.
- @param sides :: Represents the size or number of sides, most commonly six.
- @return :: Returns a random integer in the range [1, sides].
- Flat uniform distribution.
Fortuna.dice(rolls: int, sides: int) -> int
Represents the sum total of multiple rolls of the same size die.
- @param rolls :: Represents the number of times to roll the die.
- @param sides :: Represents the die size or number of sides, most commonly six.
- @return :: Returns a random integer in range [X, Y] where X = rolls and Y = rolls * sides.
- Geometric distribution based on the number and size of the dice rolled.
- Complexity scales primarily with the number of rolls, not the size of the dice.
Fortuna.plus_or_minus(number: int) -> int
- @param number :: input to determine the output distribution range.
- @return :: Returns a random integer in range [-number, number].
- Flat uniform distribution.
Fortuna.plus_or_minus_linear(number: int) -> int
- @param number :: input to determine the output distribution range.
- @return :: Returns a random integer in range [-number, number].
- Linear geometric, 45 degree triangle distribution centered on zero.
Fortuna.plus_or_minus_gauss(number: int) -> int
- @param number :: input to determine the output distribution range.
- @return :: Returns a random integer in range [-number, number].
- Stretched gaussian distribution centered on zero.
Random Index, ZeroCool Specification
ZeroCool Methods are used to generate random Sequence indices.
ZeroCool methods must have the following properties:
- Any distribution model is acceptable such that...
- The method or function must take exactly one Integer parameter N.
- The method returns a random int in range
[0, N)
for positive values of N. - The method returns a random int in range
[N, 0)
for negative values of N. - This symmetry matches how python can index a list from the back for negative values or the front for positive values of N.
from Fortuna import random_index
some_list = [i for i in range(100)] # [0..99]
print(some_list[random_index(10)]) # prints one of the first 10 items of some_list, [0, 9]
print(some_list[random_index(-10)]) # prints one of the last 10 items of some_list, [90, 99]
ZeroCool Methods
Fortuna.random_index(size: int) -> int
Flat uniform distributionFortuna.front_gauss(size: int) -> int
Gamma Distribution: Front PeakFortuna.middle_gauss(size: int) -> int
Stretched Gaussian Distribution: Median PeakFortuna.back_gauss(size: int) -> int
Gamma Distribution: Back PeakFortuna.quantum_gauss(size: int) -> int
Quantum Gaussian: Three-way MontyFortuna.front_poisson(size: int) -> int
Poisson Distribution: Front 1/3 PeakFortuna.middle_poisson(size: int) -> int
Poisson Distribution: Middle PeakFortuna.back_poisson(size: int) -> int
Poisson Distribution: Back 1/3 PeakFortuna.quantum_poisson(size: int) -> int
Quantum Poisson: Three-way MontyFortuna.front_geometric(size: int) -> int
Linear Geometric: 45 Degree Front PeakFortuna.middle_geometric(size: int) -> int
Linear Geometric: 45 Degree Middle PeakFortuna.back_geometric(size: int) -> int
Linear Geometric: 45 Degree Back PeakFortuna.quantum_geometric(size: int) -> int
Quantum Geometric: Three-way MontyFortuna.quantum_monty(size: int) -> int
Quantum Monty: Nine-way Monty
from Fortuna import front_gauss, middle_gauss, back_gauss, quantum_gauss
some_list = [i for i in range(100)]
# Each of the following prints one of the first 10 items of some_list with the appropriate distribution
print(some_list[front_gauss(10)])
print(some_list[middle_gauss(10)])
print(some_list[back_gauss(10)])
print(some_list[quantum_gauss(10)])
# Each of the following prints one of the last 10 items of some_list with the appropriate distribution
print(some_list[front_gauss(-10)])
print(some_list[middle_gauss(-10)])
print(some_list[back_gauss(-10)])
print(some_list[quantum_gauss(-10)])
Random Float Functions
Fortuna.canonical() -> float
- @return :: random float in range [0.0, 1.0), flat uniform.
Fortuna.random_float(a: Float, b: Float) -> Float
- @param a :: Float input
- @param b :: Float input
- @return :: random Float in range
[a, b)
, flat uniform distribution.
Fortuna.triangular(low: Float, high: Float, mode: Float) -> Float
- @param low :: Float, minimum output
- @param high :: Float, maximum output
- @param mode :: Float, most common output, mode must be in range
[low, high]
- @return :: random number in range
[low, high]
with a linear distribution about the mode.
Random Truth Function
Fortuna.percent_true(truth_factor: Float = 50.0) -> bool
- @param truth_factor :: The probability of True as a percentage. Default is 50 percent.
- @return :: Produces True or False based on the truth_factor as a percent of true.
- Always returns False if num is 0 or less
- Always returns True if num is 100 or more.
Shuffle Algorithm
Fortuna.shuffle(array: List[Any]) -> None
- Knuth B Shuffle Algorithm. Destructive, in-place shuffle.
- @param array :: List to be shuffled.
- @return :: None
Fortuna.knuth_a(array: List[Any]) -> None
- Knuth A Shuffle Algorithm. Destructive, in-place shuffle.
- @param array :: List to be shuffled.
- @return :: None
Fortuna.fisher_yates(array: List[Any]) -> None
- Fisher Yates Shuffle Algorithm. Destructive, in-place shuffle.
- @param array :: List to be shuffled.
- @return :: None
Utilities
Fortuna.flatten(maybe_callable, *args, flat=True, **kwargs) -> flatten(maybe_callable(*args, **kwargs))
- Recursively calls the input object and returns the result. The arguments are only passed in on the first evaluation.
- If the maybe_callable is not callable it is simply returned without error.
- Conceptually this is somewhat like collapsing the wave function. Often used as the last step in lazy evaluation.
- @param maybe_callable :: Any Object that might be callable.
- @param flat :: Boolean, default is True. Optional, keyword only. Disables flattening if flat is set to False, conceptually turns flatten into the identity function.
- @param *args, **kwargs :: Optional arguments used to flatten the maybe_callable object.
- @return :: Recursively Flattened Object.
Fortuna.smart_clamp(target: int, lo: int, hi: int) -> int
- Used to clamp the target in range
[lo, hi]
by saturating the bounds. - Essentially the same as median for exactly three integers.
- @return :: Returns the middle value, input order does not matter.
Fortuna.distribution_range(func: Callable, lo, hi)
Higher-order function for producing arbitrary distribution ranges.
If given a function like random_below, this function will produce random values
with the same distribution but in the range lo to hi, rather than from zero to N-1.
Essentially, this turns a function like random_below(N) into random_int(A, B).
- @param func: ZeroCool random distribution, F(N) ->
[0, N-1]
- @param lo: minimum limit
- @param hi: maximum limit
- @return: random value in range
[lo, hi]
Experimental
Fortuna.MultiChoice(
query: str,
*,
options: Iterable[str] = (),
default: str = "",
strict: bool = False,
cursor: str = ">>>",
) -> str
Generates multiple-choice questions for user input on the terminal.
If there is no user input and options
is not empty and there's no default
-
a random choice will be made from the options
, otherwise the default
will be used. If there is no user input and there are no options
and no
default
- the question will be repeated. If strict
is set to true - the
user input string must be in the options
, or the question will be repeated.
Options are stored lowercase and printed title case.
User input is not case sensitive.
- @param query: String.
- Question for the user.
- @param options: Optional Iterable of Strings. Default=()
- Options presented to the user as a numbered sequence.
- The user may enter an answer as text or by number.
- @param default: Optional String.
- This is used if no user input is provided.
- If no default is provided a random choice will be made.
- @param strict: Optional Bool. Default=False
- True: Answer must be in the options tuple. Not case-sensitive.
- False: Accepts any answer.
- @param cursor: Optional String. Default='>>>'
- Indicates user input field.
Fortuna Development Log
Fortuna 3.16.9
- Documentation Update
Fortuna 3.16.8
- TruffleShuffle update
- Adds truffle_shuffle()
Fortuna 3.16.7
- Documentation Update
Fortuna 3.16.6
- Adds distribution_range()
Fortuna 3.16.5
- Documentation Update
Fortuna 3.16.4
- Documentation Update
Fortuna 3.16.3
- Major TruffleShuffle performance upgrade
Fortuna 3.16.2 - Internal
- Testing
Fortuna 3.16.1
- Documentation Update
Fortuna 3.16.0
- Storm 3.3.2 Update
Fortuna 3.15.1
- Docs updated
Fortuna 3.15.0
- Type Hints Clarified via Typing Module
Fortuna 3.14.1
- Fixed another installer bug affecting gcc.
Fortuna 3.14.0
- Minor TruffleShuffle Update
- Fisher Yates, and Knuth A Shuffle Algorithms added for comparison with Fortuna.shuffle()
- Some platforms may prefer one over another. Intel favors Knuth B (Fortuna.shuffle) by more than double.
Fortuna 3.13.0 - Internal
- Development & Testing Environment Updated to Python 3.8
- Python3.8 brings a 10-20% performance boost over all.
- RandomValue API redesign. Dependency Injection is now handled at instantiation rather than call time.
Fortuna 3.12.2
- Installer update.
- Clarified the docs for MultiChoice.
Fortuna 3.12.1
- MultiChoice now accepts a default.
Fortuna 3.12.0
- MultiChoice added
Fortuna 3.10.2
- Doc string update for clarity.
- Test update
- MonkeyScope Update
Fortuna 3.10.1
- Documentation fix, RandomValue examples are now together.
Fortuna 3.10.0
- Fortuna now includes both RNG and Pyewacket.
- Documentation update.
Fortuna 3.9.11
- Installer Update, properly installs MonkeyScope as intended.
Fortuna 3.9.10
- Fixed Typos
Fortuna 3.9.9
- Docs Update
Fortuna 3.9.8
- Test Update
Fortuna 3.9.7
- Tests for RNG and Pyewacket are now included in
fortuna_extras
package.
Fortuna 3.9.6
- Documentation update.
Fortuna 3.9.5
- Storm 3.2.2 Update.
Fortuna 3.9.4
- Documentation update.
Fortuna 3.9.3
- MonkeyScope update, 10% test suite performance improvement.
Fortuna 3.9.2
- Documentation update.
Fortuna 3.9.1
flatten_with
has been renamed toflatten
. This should be non-breaking, please report any bugs.
Fortuna 3.9.0 - Internal
- Added many doc strings.
- Corrected many typos in Docs.
- The
flatten
function has been fully replaced byflatten_with
.- All classes that support automatic flattening can now accept arbitrary arguments at call time.
flatten_with
will be renamed toflatten
in a future release.
Fortuna 3.8.9
- Fixed some typos.
Fortuna 3.8.8
- Fortuna now supports Python notebooks, python3.6 or higher required.
Fortuna 3.8.7
- Storm Update
Fortuna 3.8.6
- Attempting to make Fortuna compatible with Python Notebooks.
Fortuna 3.8.5
- Installer Config Update
Fortuna 3.8.4
- Installer Config Update
Fortuna 3.8.3
- Storm Update 3.2.0
Fortuna 3.8.2
- More Typo Fix
Fortuna 3.8.1
- Typo Fix
Fortuna 3.8.0
- Major API Update, several utilities have been deprecated. See MonkeyScope for replacements.
- distribution
- distribution_timer
- timer
Fortuna 3.7.7
- Documentation Update
Fortuna 3.7.6
- Install script update.
Fortuna 3.7.5 - internal
- Storm 3.1.1 Update
- Added triangular function.
Fortuna 3.7.4
- Fixed: missing header in the project manifest, this may have caused building from source to fail.
Fortuna 3.7.3
- Storm Update
Fortuna 3.7.2
- Storm Update
Fortuna 3.7.1
- Bug fixes
Fortuna 3.7.0 - internal
- flatten_with() is now the default flattening algorithm for all Fortuna classes.
Fortuna 3.6.5
- Documentation Update
- RandomValue: New flatten-with-arguments functionality.
Fortuna 3.6.4
- RandomValue added for testing
Fortuna 3.6.3
- Developer Update
Fortuna 3.6.2
- Installer Script Update
Fortuna 3.6.1
- Documentation Update
Fortuna 3.6.0
- Storm Update
- Test Update
- Bug fix for random_range(), negative stepping is now working as intended. This bug was introduced in 3.5.0.
- Removed Features
- lazy_cat(): use QuantumMonty class instead.
- flex_cat(): use FlexCat class instead.
- truffle_shuffle(): use TruffleShuffle class instead.
Fortuna 3.5.3 - internal
- Features added for testing & development
- ActiveChoice class
- random_rotate() function
Fortuna 3.5.2
- Documentation Updates
Fortuna 3.5.1
- Test Update
Fortuna 3.5.0
- Storm Update
- Minor Bug Fix: Truffle Shuffle
- Deprecated Features
- lazy_cat(): use QuantumMonty class instead.
- flex_cat(): use FlexCat class instead.
- truffle_shuffle(): use TruffleShuffle class instead.
Fortuna 3.4.9
- Test Update
Fortuna 3.4.8
- Storm Update
Fortuna 3.4.7
- Bug fix for analytic_continuation.
Fortuna 3.4.6
- Docs Update
Fortuna 3.4.5
- Docs Update
- Range Tests Added, see extras folder.
Fortuna 3.4.4
- ZeroCool Algorithm Bug Fixes
- Typos Fixed
Fortuna 3.4.3
- Docs Update
Fortuna 3.4.2
- Typos Fixed
Fortuna 3.4.1
- Major Bug Fix: random_index()
Fortuna 3.4.0 - internal
- ZeroCool Poisson Algorithm Family Updated
Fortuna 3.3.8 - internal
- Docs Update
Fortuna 3.3.7
- Fixed Performance Bug: ZeroCool Linear Algorithm Family
Fortuna 3.3.6
- Docs Update
Fortuna 3.3.5
- ABI Updates
- Bug Fixes
Fortuna 3.3.4
- Examples Update
Fortuna 3.3.3
- Test Suite Update
Fortuna 3.3.2 - internal
- Documentation Update
Fortuna 3.3.1 - internal
- Minor Bug Fix
Fortuna 3.3.0 - internal
- Added
plus_or_minus_gauss(N: int) -> int
random int in range [-N, N] Stretched Gaussian Distribution
Fortuna 3.2.3
- Small Typos Fixed
Fortuna 3.2.2
- Documentation update.
Fortuna 3.2.1
- Small Typo Fixed
Fortuna 3.2.0
- API updates:
- QunatumMonty.uniform -> QunatumMonty.flat_uniform
- QunatumMonty.front -> QunatumMonty.front_linear
- QunatumMonty.middle -> QunatumMonty.middle_linear
- QunatumMonty.back -> QunatumMonty.back_linear
- QunatumMonty.quantum -> QunatumMonty.quantum_linear
- randindex -> random_index
- randbelow -> random_below
- randrange -> random_range
- randint -> random_int
Fortuna 3.1.0
discrete()
has been removed, see Weighted Choice.lazy_cat()
added.- All ZeroCool methods have been raised to top level API, for use with lazy_cat()
Fortuna 3.0.1
- minor typos.
Fortuna 3.0.0
- Storm 2 Rebuild.
Fortuna 2.1.1
- Small bug fixes.
- Test updates.
Fortuna 2.1.0, Major Feature Update
- Fortuna now includes the best of RNG and Pyewacket.
Fortuna 2.0.3
- Bug fix.
Fortuna 2.0.2
- Clarified some documentation.
Fortuna 2.0.1
- Fixed some typos.
Fortuna 2.0.0b1-10
- Total rebuild. New RNG Storm Engine.
Fortuna 1.26.7.1
- README updated.
Fortuna 1.26.7
- Small bug fix.
Fortuna 1.26.6
- Updated README to reflect recent changes to the test script.
Fortuna 1.26.5
- Fixed small bug in test script.
Fortuna 1.26.4
- Updated documentation for clarity.
- Fixed a minor typo in the test script.
Fortuna 1.26.3
- Clean build.
Fortuna 1.26.2
- Fixed some minor typos.
Fortuna 1.26.1
- Release.
Fortuna 1.26.0 beta 2
- Moved README and LICENSE files into fortuna_extras folder.
Fortuna 1.26.0 beta 1
- Dynamic version scheme implemented.
- The Fortuna Extension now requires the fortuna_extras package, previously it was optional.
Fortuna 1.25.4
- Fixed some minor typos in the test script.
Fortuna 1.25.3
- Since version 1.24 Fortuna requires Python 3.7 or higher. This patch corrects an issue where the setup script incorrectly reported requiring Python 3.6 or higher.
Fortuna 1.25.2
- Updated test suite.
- Major performance update for TruffleShuffle.
- Minor performance update for QuantumMonty & FlexCat: cycle monty.
Fortuna 1.25.1
- Important bug fix for TruffleShuffle, QuantumMonty and FlexCat.
Fortuna 1.25
- Full 64bit support.
- The Distribution & Performance Tests have been redesigned.
- Bloat Control: Two experimental features have been removed.
- RandomWalk
- CatWalk
- Bloat Control: Several utility functions have been removed from the top level API. These function remain in the Fortuna namespace for now, but may change in the future without warning.
- stretch_bell, internal only.
- min_max, not used anymore.
- analytic_continuation, internal only.
- flatten, internal only.
Fortuna 1.24.3
- Low level refactoring, non-breaking patch.
Fortuna 1.24.2
- Setup config updated to improve installation.
Fortuna 1.24.1
- Low level patch to avoid potential ADL issue. All low level function calls are now qualified.
Fortuna 1.24
- Documentation updated for even more clarity.
- Bloat Control: Two naïve utility functions that are no longer used in the module have been removed.
- n_samples -> use a list comprehension instead.
[f(x) for _ in range(n)]
- bind -> use a lambda instead.
lambda: f(x)
- n_samples -> use a list comprehension instead.
Fortuna 1.23.7
- Documentation updated for clarity.
- Minor bug fixes.
- TruffleShuffle has been redesigned slightly, it now uses a random rotate instead of swap.
- Custom
__repr__
methods have been added to each class.
Fortuna 1.23.6
- New method for QuantumMonty: quantum_not_monty - produces the upside down quantum_monty.
- New bias option for FlexCat: not_monty.
Fortuna 1.23.5.1
- Fixed some small typos.
Fortuna 1.23.5
- Documentation updated for clarity.
- All sequence wrappers can now accept generators as input.
- Six new functions added:
- random_float() -> float in range [0.0..1.0) exclusive, uniform flat distribution.
- percent_true_float(num: float) -> bool, Like percent_true but with floating point precision.
- plus_or_minus_linear_down(num: int) -> int in range [-num..num], upside down pyramid.
- plus_or_minus_curve_down(num: int) -> int in range [-num..num], upside down bell curve.
- mostly_not_middle(num: int) -> int in range [0..num], upside down pyramid.
- mostly_not_center(num: int) -> int in range [0..num], upside down bell curve.
- Two new methods for QuantumMonty:
- mostly_not_middle
- mostly_not_center
- Two new bias options for FlexCat, either can be used to define x and/or y axis bias:
- not_middle
- not_center
Fortuna 1.23.4.2
- Fixed some minor typos in the README.md file.
Fortuna 1.23.4.1
- Fixed some minor typos in the test suite.
Fortuna 1.23.4
- Fortuna is now Production/Stable!
- Fortuna and Fortuna Pure now use the same test suite.
Fortuna 0.23.4, first release candidate.
- RandomCycle, BlockCycle and TruffleShuffle have been refactored and combined into one class: TruffleShuffle.
- QuantumMonty and FlexCat will now use the new TruffleShuffle for cycling.
- Minor refactoring across the module.
Fortuna 0.23.3, internal
- Function shuffle(arr: list) added.
Fortuna 0.23.2, internal
- Simplified the plus_or_minus_curve(num: int) function, output will now always be bounded to the range [-num..num].
- Function stretched_bell(num: int) added, this matches the previous behavior of an unbounded plus_or_minus_curve.
Fortuna 0.23.1, internal
- Small bug fixes and general clean up.
Fortuna 0.23.0
- The number of test cycles in the test suite has been reduced to 10,000 (down from 100,000). The performance of the pure python implementation and the c-extension are now directly comparable.
- Minor tweaks made to the examples in
.../fortuna_extras/fortuna_examples.py
Fortuna 0.22.2, experimental features
- BlockCycle class added.
- RandomWalk class added.
- CatWalk class added.
Fortuna 0.22.1
- Fortuna classes no longer return lists of values, this behavior has been extracted to a free function called n_samples.
Fortuna 0.22.0, experimental features
- Function bind added.
- Function n_samples added.
Fortuna 0.21.3
- Flatten will no longer raise an error if passed a callable item that it can't call. It correctly returns such items in an uncalled state without error.
- Simplified
.../fortuna_extras/fortuna_examples.py
- removed unnecessary class structure.
Fortuna 0.21.2
- Fix some minor bugs.
Fortuna 0.21.1
- Fixed a bug in
.../fortuna_extras/fortuna_examples.py
Fortuna 0.21.0
- Function flatten added.
- Flatten: The Fortuna classes will recursively unpack callable objects in the data set.
Fortuna 0.20.10
- Documentation updated.
Fortuna 0.20.9
- Minor bug fixes.
Fortuna 0.20.8, internal
- Testing cycle for potential new features.
Fortuna 0.20.7
- Documentation updated for clarity.
Fortuna 0.20.6
- Tests updated based on recent changes.
Fortuna 0.20.5, internal
- Documentation updated based on recent changes.
Fortuna 0.20.4, internal
- WeightedChoice (both types) can optionally return a list of samples rather than just one value, control the length of the list via the n_samples argument.
Fortuna 0.20.3, internal
- RandomCycle can optionally return a list of samples rather than just one value, control the length of the list via the n_samples argument.
Fortuna 0.20.2, internal
- QuantumMonty can optionally return a list of samples rather than just one value, control the length of the list via the n_samples argument.
Fortuna 0.20.1, internal
- FlexCat can optionally return a list of samples rather than just one value, control the length of the list via the n_samples argument.
Fortuna 0.20.0, internal
- FlexCat now accepts a standard dict as input. The ordered(ness) of dict is now part of the standard in Python 3.7.1. Previously FlexCat required an OrderedDict, now it accepts either and treats them the same.
Fortuna 0.19.7
- Fixed bug in
.../fortuna_extras/fortuna_examples.py
.
Fortuna 0.19.6
- Updated documentation formatting.
- Small performance tweak for QuantumMonty and FlexCat.
Fortuna 0.19.5
- Minor documentation update.
Fortuna 0.19.4
- Minor update to all classes for better debugging.
Fortuna 0.19.3
- Updated plus_or_minus_curve to allow unbounded output.
Fortuna 0.19.2
- Internal development cycle.
- Minor update to FlexCat for better debugging.
Fortuna 0.19.1
- Internal development cycle.
Fortuna 0.19.0
- Updated documentation for clarity.
- MultiCat has been removed, it is replaced by FlexCat.
- Mostly has been removed, it is replaced by QuantumMonty.
Fortuna 0.18.7
- Fixed some more README typos.
Fortuna 0.18.6
- Fixed some README typos.
Fortuna 0.18.5
- Updated documentation.
- Fixed another minor test bug.
Fortuna 0.18.4
- Updated documentation to reflect recent changes.
- Fixed some small test bugs.
- Reduced default number of test cycles to 10,000 - down from 100,000.
Fortuna 0.18.3
- Fixed some minor README typos.
Fortuna 0.18.2
- Fixed a bug with Fortuna Pure.
Fortuna 0.18.1
- Fixed some minor typos.
- Added tests for
.../fortuna_extras/fortuna_pure.py
Fortuna 0.18.0
- Introduced new test format, now includes average call time in nanoseconds.
- Reduced default number of test cycles to 100,000 - down from 1,000,000.
- Added pure Python implementation of Fortuna:
.../fortuna_extras/fortuna_pure.py
- Promoted several low level functions to top level.
zero_flat(num: int) -> int
zero_cool(num: int) -> int
zero_extreme(num: int) -> int
max_cool(num: int) -> int
max_extreme(num: int) -> int
analytic_continuation(func: staticmethod, num: int) -> int
min_max(num: int, lo: int, hi: int) -> int
Fortuna 0.17.3
- Internal development cycle.
Fortuna 0.17.2
- User Requested: dice() and d() functions now support negative numbers as input.
Fortuna 0.17.1
- Fixed some minor typos.
Fortuna 0.17.0
- Added QuantumMonty to replace Mostly, same default behavior with more options.
- Mostly is depreciated and may be removed in a future release.
- Added FlexCat to replace MultiCat, same default behavior with more options.
- MultiCat is depreciated and may be removed in a future release.
- Expanded the Treasure Table example in
.../fortuna_extras/fortuna_examples.py
Fortuna 0.16.2
- Minor refactoring for WeightedChoice.
Fortuna 0.16.1
- Redesigned fortuna_examples.py to feature a dynamic random magic item generator.
- Raised cumulative_weighted_choice function to top level.
- Added test for cumulative_weighted_choice as free function.
- Updated MultiCat documentation for clarity.
Fortuna 0.16.0
- Pushed distribution_timer to the .pyx layer.
- Changed default number of iterations of tests to 1 million, up form 1 hundred thousand.
- Reordered tests to better match documentation.
- Added Base Case Fortuna.fast_rand_below.
- Added Base Case Fortuna.fast_d.
- Added Base Case Fortuna.fast_dice.
Fortuna 0.15.10
- Internal Development Cycle
Fortuna 0.15.9
- Added Base Cases for random_value()
- Added Base Case for randint()
Fortuna 0.15.8
- Clarified MultiCat Test
Fortuna 0.15.7
- Fixed minor typos.
Fortuna 0.15.6
- Fixed minor typos.
- Simplified MultiCat example.
Fortuna 0.15.5
- Added MultiCat test.
- Fixed some minor typos in docs.
Fortuna 0.15.4
- Performance optimization for both WeightedChoice() variants.
- Cython update provides small performance enhancement across the board.
- Compilation now leverages Python3 all the way down.
- MultiCat pushed to the .pyx layer for better performance.
Fortuna 0.15.3
- Reworked the MultiCat example to include several randomizing strategies working in concert.
- Added Multi Dice 10d10 performance tests.
- Updated sudo code in documentation to be more pythonic.
Fortuna 0.15.2
- Fixed: Linux installation failure.
- Added: complete source files to the distribution (.cpp .hpp .pyx).
Fortuna 0.15.1
- Updated & simplified distribution_timer in
fortuna_tests.py
- Readme updated, fixed some typos.
- Known issue preventing successful installation on some linux platforms.
Fortuna 0.15.0
- Performance tweaks.
- Readme updated, added some details.
Fortuna 0.14.1
- Readme updated, fixed some typos.
Fortuna 0.14.0
- Fixed a bug where the analytic continuation algorithm caused a rare issue during compilation on some platforms.
Fortuna 0.13.3
- Fixed Test Bug: percent sign was missing in output distributions.
- Readme updated: added update history, fixed some typos.
Fortuna 0.13.2
- Readme updated for even more clarity.
Fortuna 0.13.1
- Readme updated for clarity.
Fortuna 0.13.0
- Minor Bug Fixes.
- Readme updated for aesthetics.
- Added Tests:
.../fortuna_extras/fortuna_tests.py
Fortuna 0.12.0
- Internal test for future update.
Fortuna 0.11.0
- Initial Release: Public Beta
Fortuna 0.10.0
- Module name changed from Dice to Fortuna
Dice 0.1.x - 0.9.x
- Experimental Phase
Distribution and Performance Tests
Testbed:
- Hardware: 2.7Ghz Quad i7 Skylake, 16GB RAM, 1TB SSD
- Software: MacOS 10.14.6, Python 3.8, MonkeyScope: Fortuna
MonkeyScope: Fortuna Quick Test
Random Sequence Values:
some_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Base Case
Output Analysis: Random.choice(some_list)
Typical Timing: 597 ± 26 ns
Statistics of 1000 samples:
Minimum: 0
Median: 4
Maximum: 9
Mean: 4.503
Std Deviation: 2.899724021247436
Distribution of 100000 samples:
0: 9.962%
1: 10.022%
2: 9.987%
3: 10.111%
4: 10.063%
5: 10.095%
6: 10.035%
7: 9.871%
8: 9.89%
9: 9.964%
Output Analysis: random_value(some_list)
Typical Timing: 174 ± 96 ns
Statistics of 1000 samples:
Minimum: 0
Median: 4
Maximum: 9
Mean: 4.423
Std Deviation: 2.886243475765931
Distribution of 100000 samples:
0: 10.005%
1: 10.098%
2: 9.931%
3: 10.147%
4: 9.848%
5: 10.028%
6: 9.979%
7: 10.009%
8: 10.002%
9: 9.953%
Wide Distribution
Truffle = TruffleShuffle(some_list)
Output Analysis: Truffle()
Typical Timing: 499 ± 15 ns
Statistics of 1000 samples:
Minimum: 0
Median: 4
Maximum: 9
Mean: 4.456
Std Deviation: 2.8671038147029635
Distribution of 100000 samples:
0: 9.931%
1: 10.059%
2: 10.151%
3: 9.944%
4: 10.003%
5: 9.93%
6: 9.979%
7: 10.097%
8: 10.01%
9: 9.896%
truffle = truffle_shuffle(some_list)
Output Analysis: truffle()
Typical Timing: 193 ± 13 ns
Statistics of 1000 samples:
Minimum: 0
Median: 4
Maximum: 9
Mean: 4.436
Std Deviation: 2.8534270703920304
Distribution of 100000 samples:
0: 9.96%
1: 9.998%
2: 9.962%
3: 10.042%
4: 10.058%
5: 9.967%
6: 10.046%
7: 9.99%
8: 9.996%
9: 9.981%
Single objects with many distribution possibilities
some_tuple = tuple(i for i in range(10))
monty = QuantumMonty(some_tuple)
Output Analysis: monty()
Typical Timing: 513 ± 13 ns
Statistics of 1000 samples:
Minimum: 0
Median: 4
Maximum: 9
Mean: 4.495
Std Deviation: 2.8785866777398352
Distribution of 100000 samples:
0: 10.929%
1: 8.924%
2: 8.969%
3: 9.642%
4: 11.655%
5: 11.595%
6: 9.656%
7: 8.793%
8: 8.986%
9: 10.851%
rand_value = RandomValue(collection, zero_cool, flat)
Output Analysis: rand_value()
Typical Timing: 397 ± 2 ns
Statistics of 1000 samples:
Minimum: 0
Median: 5
Maximum: 9
Mean: 4.616
Std Deviation: 2.838767796527677
Distribution of 100000 samples:
0: 10.018%
1: 9.988%
2: 10.063%
3: 9.893%
4: 10.001%
5: 9.813%
6: 10.096%
7: 10.169%
8: 10.106%
9: 9.853%
Weighted Tables:
population = ('A', 'B', 'C', 'D')
cum_weights = (1, 3, 6, 10)
rel_weights = (1, 2, 3, 4)
cum_weighted_table = zip(cum_weights, population)
rel_weighted_table = zip(rel_weights, population)
Cumulative Base Case
Output Analysis: Random.choices(population, cum_weights=cum_weights)
Typical Timing: 1570 ± 101 ns
Distribution of 100000 samples:
A: 10.076%
B: 19.93%
C: 29.931%
D: 40.063%
cum_weighted_choice = CumulativeWeightedChoice(cum_weighted_table)
Output Analysis: cum_weighted_choice()
Typical Timing: 406 ± 3 ns
Distribution of 100000 samples:
A: 9.893%
B: 19.93%
C: 30.119%
D: 40.058%
Output Analysis: cumulative_weighted_choice(tuple(zip(cum_weights, population)))
Typical Timing: 150 ± 6 ns
Distribution of 100000 samples:
A: 9.965%
B: 19.988%
C: 30.189%
D: 39.858%
Relative Base Case
Output Analysis: Random.choices(population, weights=rel_weights)
Typical Timing: 1915 ± 91 ns
Distribution of 100000 samples:
A: 9.833%
B: 19.9%
C: 30.085%
D: 40.182%
rel_weighted_choice = RelativeWeightedChoice(rel_weighted_table)
Output Analysis: rel_weighted_choice()
Typical Timing: 391 ± 16 ns
Distribution of 100000 samples:
A: 10.038%
B: 19.968%
C: 30.087%
D: 39.907%
Random Matrix Values:
some_matrix = {'A': (1, 2, 3, 4), 'B': (10, 20, 30, 40), 'C': (100, 200, 300, 400)}
flex_cat = FlexCat(some_matrix)
Output Analysis: flex_cat()
Typical Timing: 880 ± 28 ns
Statistics of 1000 samples:
Minimum: 1
Median: 4
Maximum: 400
Mean: 32.94
Std Deviation: 76.37870191425164
Distribution of 100000 samples:
1: 13.92%
2: 13.826%
3: 13.906%
4: 13.882%
10: 8.353%
20: 8.342%
30: 8.373%
40: 8.303%
100: 2.769%
200: 2.735%
300: 2.821%
400: 2.77%
Output Analysis: flex_cat("C")
Typical Timing: 635 ± 45 ns
Statistics of 1000 samples:
Minimum: 100
Median: 200
Maximum: 400
Mean: 248.1
Std Deviation: 111.84318888023043
Distribution of 100000 samples:
100: 24.946%
200: 24.986%
300: 24.991%
400: 25.077%
Random Integers:
Base Case
Output Analysis: Random.randrange(10)
Typical Timing: 561 ± 6 ns
Statistics of 1000 samples:
Minimum: 0
Median: 4
Maximum: 9
Mean: 4.396
Std Deviation: 2.8885164925143716
Distribution of 100000 samples:
0: 9.999%
1: 10.123%
2: 10.018%
3: 10.03%
4: 10.127%
5: 9.969%
6: 9.973%
7: 9.964%
8: 9.994%
9: 9.803%
Output Analysis: random_below(10)
Typical Timing: 85 ± 15 ns
Statistics of 1000 samples:
Minimum: 0
Median: 5
Maximum: 9
Mean: 4.558
Std Deviation: 2.755036519944196
Distribution of 100000 samples:
0: 9.86%
1: 9.846%
2: 10.116%
3: 9.806%
4: 10.041%
5: 10.176%
6: 10.058%
7: 10.136%
8: 10.078%
9: 9.883%
Output Analysis: random_index(10)
Typical Timing: 82 ± 12 ns
Statistics of 1000 samples:
Minimum: 0
Median: 4
Maximum: 9
Mean: 4.388
Std Deviation: 2.8399861833328557
Distribution of 100000 samples:
0: 10.057%
1: 9.984%
2: 10.002%
3: 10.081%
4: 10.071%
5: 9.905%
6: 10.001%
7: 9.904%
8: 9.939%
9: 10.056%
Output Analysis: random_range(10)
Typical Timing: 93 ± 7 ns
Statistics of 1000 samples:
Minimum: 0
Median: 5
Maximum: 9
Mean: 4.556
Std Deviation: 2.87386901634767
Distribution of 100000 samples:
0: 9.862%
1: 10.097%
2: 9.993%
3: 9.969%
4: 10.088%
5: 9.862%
6: 9.962%
7: 9.998%
8: 10.019%
9: 10.15%
Output Analysis: random_below(-10)
Typical Timing: 94 ± 12 ns
Statistics of 1000 samples:
Minimum: -9
Median: -5
Maximum: 0
Mean: -4.557
Std Deviation: 2.9005454942414133
Distribution of 100000 samples:
-9: 10.081%
-8: 9.9%
-7: 10.132%
-6: 9.959%
-5: 9.843%
-4: 10.103%
-3: 9.985%
-2: 9.754%
-1: 10.271%
0: 9.972%
Output Analysis: random_index(-10)
Typical Timing: 87 ± 2 ns
Statistics of 1000 samples:
Minimum: -10
Median: -5
Maximum: -1
Mean: -5.37
Std Deviation: 2.9061220802893923
Distribution of 100000 samples:
-10: 10.043%
-9: 9.825%
-8: 9.911%
-7: 9.966%
-6: 10.0%
-5: 10.015%
-4: 10.073%
-3: 10.197%
-2: 10.049%
-1: 9.921%
Output Analysis: random_range(-10)
Typical Timing: 107 ± 5 ns
Statistics of 1000 samples:
Minimum: -10
Median: -5
Maximum: -1
Mean: -5.473
Std Deviation: 2.9047734350046492
Distribution of 100000 samples:
-10: 10.048%
-9: 9.917%
-8: 10.079%
-7: 9.978%
-6: 10.138%
-5: 9.971%
-4: 9.972%
-3: 9.976%
-2: 9.952%
-1: 9.969%
Base Case
Output Analysis: Random.randrange(1, 10)
Typical Timing: 761 ± 46 ns
Statistics of 1000 samples:
Minimum: 1
Median: 5
Maximum: 9
Mean: 4.816
Std Deviation: 2.6024828370071758
Distribution of 100000 samples:
1: 11.001%
2: 11.012%
3: 10.933%
4: 11.06%
5: 11.106%
6: 11.345%
7: 11.24%
8: 11.056%
9: 11.247%
Output Analysis: random_range(1, 10)
Typical Timing: 96 ± 6 ns
Statistics of 1000 samples:
Minimum: 1
Median: 5
Maximum: 9
Mean: 5.005
Std Deviation: 2.5627217060271184
Distribution of 100000 samples:
1: 11.114%
2: 11.042%
3: 11.292%
4: 11.036%
5: 10.973%
6: 10.995%
7: 11.315%
8: 11.12%
9: 11.113%
Output Analysis: random_range(10, 1)
Typical Timing: 103 ± 13 ns
Statistics of 1000 samples:
Minimum: 1
Median: 5
Maximum: 9
Mean: 4.978
Std Deviation: 2.5593096854554487
Distribution of 100000 samples:
1: 11.0%
2: 11.066%
3: 11.141%
4: 11.3%
5: 11.147%
6: 10.902%
7: 11.292%
8: 11.029%
9: 11.123%
Base Case
Output Analysis: Random.randint(-5, 5)
Typical Timing: 873 ± 29 ns
Statistics of 1000 samples:
Minimum: -5
Median: 0
Maximum: 5
Mean: -0.111
Std Deviation: 3.186350864520703
Distribution of 100000 samples:
-5: 9.077%
-4: 9.035%
-3: 8.967%
-2: 9.222%
-1: 9.246%
0: 8.998%
1: 9.11%
2: 8.973%
3: 9.206%
4: 9.031%
5: 9.135%
Output Analysis: random_int(-5, 5)
Typical Timing: 72 ± 10 ns
Statistics of 1000 samples:
Minimum: -5
Median: 0
Maximum: 5
Mean: 0.018
Std Deviation: 3.2049879793765137
Distribution of 100000 samples:
-5: 9.148%
-4: 9.189%
-3: 8.907%
-2: 9.154%
-1: 9.225%
0: 9.058%
1: 9.059%
2: 8.994%
3: 9.052%
4: 8.936%
5: 9.278%
Base Case
Output Analysis: Random.randrange(1, 20, 2)
Typical Timing: 960 ± 34 ns
Statistics of 1000 samples:
Minimum: 1
Median: 9
Maximum: 19
Mean: 9.87
Std Deviation: 5.680084802479921
Distribution of 100000 samples:
1: 10.157%
3: 9.97%
5: 9.899%
7: 10.18%
9: 9.772%
11: 10.022%
13: 9.858%
15: 10.229%
17: 9.879%
19: 10.034%
Output Analysis: random_range(1, 20, 2)
Typical Timing: 96 ± 10 ns
Statistics of 1000 samples:
Minimum: 1
Median: 9
Maximum: 19
Mean: 9.79
Std Deviation: 5.627394385287703
Distribution of 100000 samples:
1: 9.937%
3: 10.076%
5: 9.885%
7: 9.861%
9: 10.127%
11: 10.155%
13: 10.11%
15: 9.959%
17: 9.933%
19: 9.957%
Output Analysis: random_range(1, 20, -2)
Typical Timing: 102 ± 16 ns
Statistics of 1000 samples:
Minimum: 2
Median: 10
Maximum: 20
Mean: 10.75
Std Deviation: 5.7802172027451455
Distribution of 100000 samples:
2: 9.976%
4: 10.04%
6: 10.079%
8: 10.009%
10: 10.084%
12: 10.012%
14: 9.991%
16: 9.869%
18: 10.079%
20: 9.861%
Output Analysis: random_range(20, 1, -2)
Typical Timing: 98 ± 12 ns
Statistics of 1000 samples:
Minimum: 2
Median: 12
Maximum: 20
Mean: 10.976
Std Deviation: 5.740416045582095
Distribution of 100000 samples:
2: 10.029%
4: 9.989%
6: 9.961%
8: 10.037%
10: 9.838%
12: 10.017%
14: 10.167%
16: 9.972%
18: 9.944%
20: 10.046%
Output Analysis: d(10)
Typical Timing: 64 ± 2 ns
Statistics of 1000 samples:
Minimum: 1
Median: 5
Maximum: 10
Mean: 5.535
Std Deviation: 2.8465554408579288
Distribution of 100000 samples:
1: 10.141%
2: 10.016%
3: 9.999%
4: 10.038%
5: 9.891%
6: 10.057%
7: 9.797%
8: 9.851%
9: 10.039%
10: 10.171%
Output Analysis: dice(3, 6)
Typical Timing: 119 ± 2 ns
Statistics of 1000 samples:
Minimum: 3
Median: 10
Maximum: 18
Mean: 10.482
Std Deviation: 2.9031197192165714
Distribution of 100000 samples:
3: 0.415%
4: 1.43%
5: 2.715%
6: 4.633%
7: 6.92%
8: 9.763%
9: 11.467%
10: 12.549%
11: 12.459%
12: 11.571%
13: 9.824%
14: 7.125%
15: 4.489%
16: 2.77%
17: 1.409%
18: 0.461%
Output Analysis: ability_dice(4)
Typical Timing: 220 ± 25 ns
Statistics of 1000 samples:
Minimum: 3
Median: 12
Maximum: 18
Mean: 12.199
Std Deviation: 2.897895235648935
Distribution of 100000 samples:
3: 0.076%
4: 0.301%
5: 0.77%
6: 1.616%
7: 2.911%
8: 4.789%
9: 7.09%
10: 9.522%
11: 11.381%
12: 12.805%
13: 13.283%
14: 12.321%
15: 10.114%
16: 7.313%
17: 4.087%
18: 1.621%
Output Analysis: plus_or_minus(5)
Typical Timing: 68 ± 5 ns
Statistics of 1000 samples:
Minimum: -5
Median: 0
Maximum: 5
Mean: 0.168
Std Deviation: 3.1089293078874345
Distribution of 100000 samples:
-5: 9.149%
-4: 9.273%
-3: 8.974%
-2: 9.032%
-1: 9.011%
0: 9.207%
1: 9.059%
2: 9.187%
3: 9.073%
4: 9.045%
5: 8.99%
Output Analysis: plus_or_minus_linear(5)
Typical Timing: 91 ± 2 ns
Statistics of 1000 samples:
Minimum: -5
Median: 0
Maximum: 5
Mean: 0.068
Std Deviation: 2.4713323296318292
Distribution of 100000 samples:
-5: 2.796%
-4: 5.486%
-3: 8.249%
-2: 11.108%
-1: 13.743%
0: 16.667%
1: 14.002%
2: 11.139%
3: 8.455%
4: 5.598%
5: 2.757%
Output Analysis: plus_or_minus_gauss(5)
Typical Timing: 107 ± 2 ns
Statistics of 1000 samples:
Minimum: -4
Median: 0
Maximum: 5
Mean: 0.105
Std Deviation: 1.6669594337456906
Distribution of 100000 samples:
-5: 0.198%
-4: 1.186%
-3: 4.476%
-2: 11.357%
-1: 20.304%
0: 24.683%
1: 20.563%
2: 11.429%
3: 4.457%
4: 1.171%
5: 0.176%
Random Floats:
Base Case
Output Analysis: Random.random()
Typical Timing: 41 ± 2 ns
Statistics of 1000 samples:
Minimum: 0.0017530548175271887
Median: (0.49360279224868, 0.4939320936983206)
Maximum: 0.9994943699215891
Mean: 0.5013867130994024
Std Deviation: 0.29125925699590205
Post-processor distribution of 100000 samples using round method:
0: 49.747%
1: 50.253%
Output Analysis: canonical()
Typical Timing: 56 ± 9 ns
Statistics of 1000 samples:
Minimum: 0.0004574314322360088
Median: (0.47984143078127517, 0.4810671145990408)
Maximum: 0.9999944704774775
Mean: 0.4885481327640577
Std Deviation: 0.2823693854847091
Post-processor distribution of 100000 samples using round method:
0: 49.956%
1: 50.044%
Output Analysis: random_float(0.0, 10.0)
Typical Timing: 50 ± 4 ns
Statistics of 1000 samples:
Minimum: 0.011411698863875504
Median: (4.78711508053433, 4.82529613062551)
Maximum: 9.996183236593223
Mean: 4.936771693151047
Std Deviation: 2.86014321657378
Post-processor distribution of 100000 samples using floor method:
0: 9.925%
1: 10.036%
2: 9.999%
3: 9.994%
4: 10.05%
5: 9.96%
6: 9.976%
7: 9.923%
8: 10.027%
9: 10.11%
Base Case
Output Analysis: Random.triangular(0.0, 10.0, 5.0)
Typical Timing: 484 ± 27 ns
Statistics of 1000 samples:
Minimum: 0.08560660007521669
Median: (5.043784203896645, 5.045014347061759)
Maximum: 9.783884224746105
Mean: 5.084168827462857
Std Deviation: 2.0087379776092202
Post-processor distribution of 100000 samples using round method:
0: 0.519%
1: 3.863%
2: 8.194%
3: 11.861%
4: 16.032%
5: 18.994%
6: 15.877%
7: 12.169%
8: 8.018%
9: 3.982%
10: 0.491%
Output Analysis: triangular(0.0, 10.0, 5.0)
Typical Timing: 66 ± 8 ns
Statistics of 1000 samples:
Minimum: 0.1071899041783795
Median: (5.012934238714263, 5.017605711334041)
Maximum: 9.707379723697699
Mean: 4.965402349651464
Std Deviation: 2.0758053295281145
Post-processor distribution of 100000 samples using round method:
0: 0.534%
1: 3.911%
2: 8.109%
3: 11.986%
4: 15.954%
5: 18.983%
6: 16.04%
7: 11.874%
8: 8.022%
9: 4.085%
10: 0.502%
Random Booleans:
Output Analysis: percent_true(33.33)
Typical Timing: 51 ± 8 ns
Statistics of 1000 samples:
Minimum: False
Median: False
Maximum: True
Mean: 0.337
Std Deviation: 0.4729214043101186
Distribution of 100000 samples:
False: 66.683%
True: 33.317%
Shuffle Performance:
some_small_list = [i for i in range(10)]
some_med_list = [i for i in range(100)]
some_large_list = [i for i in range(1000)]
Base Case:
Random.shuffle()
Typical Timing: 4777 ± 206 ns
Typical Timing: 42025 ± 454 ns
Typical Timing: 447958 ± 4101 ns
Fortuna.shuffle()
Typical Timing: 505 ± 77 ns
Typical Timing: 4769 ± 54 ns
Typical Timing: 45950 ± 93 ns
Fortuna.knuth_a()
Typical Timing: 1042 ± 42 ns
Typical Timing: 8949 ± 520 ns
Typical Timing: 102318 ± 175 ns
Fortuna.fisher_yates()
Typical Timing: 1200 ± 57 ns
Typical Timing: 8520 ± 91 ns
Typical Timing: 100637 ± 351 ns
-------------------------------------------------------------------------
Total Test Time: 3.424 seconds
Legal Information
Fortuna is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. See online version of this license here: http://creativecommons.org/licenses/by-nc/3.0/
Other licensing options are available, please contact the author for details: Robert Sharp
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file Fortuna-3.17.0.tar.gz
.
File metadata
- Download URL: Fortuna-3.17.0.tar.gz
- Upload date:
- Size: 190.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 962659793362310f67795d7fe53eab24d5977472d45472e01d9fa0addc58e0d3 |
|
MD5 | 4c43db827c72fd0e37ebab102b7e1689 |
|
BLAKE2b-256 | dd0e0c79d51feb8672507e83548b19a12897d340edb3cf7318f64a96c08cf66b |
Provenance
File details
Details for the file Fortuna-3.17.0-cp38-cp38-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: Fortuna-3.17.0-cp38-cp38-macosx_10_9_x86_64.whl
- Upload date:
- Size: 176.8 kB
- Tags: CPython 3.8, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d1c37a1567e953dd39f7d9a17f90a34f92d6f11ed90974943272479aeffd5630 |
|
MD5 | b4907f483098bbb94c0dbe1cce3bba65 |
|
BLAKE2b-256 | 1fb1b1364f8252787b200036dede811a35267d6500233d965ff21b6ca576893f |