Skip to main content

High Performance Random Value Toolkit

Project description

Fortuna: Generative Modeling Toolkit for Python3

© 2020 Robert Sharp, all rights reserved.

Fortuna's main goal is to provide a quick and easy way to build custom random functions for your data that are byte-code fast and thread aware. Fortuna also offers a variety of high-performance random number functions like random_range(start, stop, step) and dice(rolls, sides).

The core functionality of Fortuna is based on the Storm Engine - created by the same developer (Robert Sharp). While Storm is a high quality, hardware seeded random engine - it is not appropriate for cryptography of any kind. Fortuna is meant for games, data science, A.I. and experimental programming... not security!

Quick Install $ pip install Fortuna

Installation may require the following:

  • Modern version of MacOS or Linux.
  • WSL: Windows requires Fortuna to be installed via Python3 running inside the Windows Subsystem for Linux.
  • Modern C++17 Compiler and Standard Library: Clang or GCC. Typically not required on the latest version of MacOS.
    • If you're running an older version of MacOS you can install Xcode to get the Clang compiler and all dependencies.

Sister Projects:


Table of Contents:

  • Numeric Limits
  • Random Value Classes
    • RandomValue(Iterable) -> Callable -> Value
    • TruffleShuffle(Iterable) -> Callable -> Value
    • QuantumMonty(Iterable) -> Callable -> Value
    • CumulativeWeightedChoice(Iterable[Tuple[int, Any]]) -> Callable -> Value
    • RelativeWeightedChoice(Iterable[Tuple[int, Any]]) -> Callable -> Value
    • FlexCat(Dict[str, Iterable[Any]]) -> Callable -> Value
  • Random Value Functions
    • random_value(data: Sequence[Any]) -> Any
    • cumulative_weighted_choice(Sequence[Tuple[int, Any]]) -> Any
    • truffle_shuffle(data: Iterable[Any]) -> Callable -> Any
  • Random Integer Functions
    • random_below(Integer) -> Integer
    • random_int(Integer, Integer) -> Integer
    • random_range(Integer, Integer, Integer) -> Integer
    • d(Integer) -> Integer
    • dice(Integer, Integer) -> Integer
    • plus_or_minus(Integer) -> Integer
    • plus_or_minus_linear(Integer) -> Integer
    • plus_or_minus_gauss(Integer) -> Integer
    • binomial_variate(Integer, Float) -> Integer
    • negative_binomial_variate(Integer, Float) -> Integer
    • geometric_variate(Float) -> Integer
    • poisson_variate(Float) -> Integer
  • Random Index Functions
    • ZeroCool Specification: f(N) -> [0, N) or f(-N) -> [-N, 0)
    • random_index(Integer) -> Integer
    • front_gauss(Integer) -> Integer
    • middle_gauss(Integer) -> Integer
    • back_gauss(Integer) -> Integer
    • quantum_gauss(Integer) -> Integer
    • front_poisson(Integer) -> Integer
    • middle_poisson(Integer) -> Integer
    • back_poisson(Integer) -> Integer
    • quantum_poisson(Integer) -> Integer
    • front_linear(Integer) -> Integer
    • middle_linear(Integer) -> Integer
    • back_linear(Integer) -> Integer
    • quantum_linear(Integer) -> Integer
    • quantum_monty(Integer) -> Integer
  • Random Float Functions
    • canonical() -> Float
    • random_float(Float, Float) -> Float
    • triangular(Float, Float, Float) -> Float
    • normal_variate(Float, Float) -> Float
    • lognormal_variate(Float, Float) -> Float
    • exponential_variate(Float) -> Float
    • gamma_variate(Float, Float) -> Float
    • weibull_variate(Float, Float) -> Float
    • extreme_value_variate(Float, Float) -> Float
    • chi_squared_variate(Float) -> Float
    • cauchy_variate(Float, Float) -> Float
    • fisher_f_variate(Float, Float) -> Float
    • student_t_variate(Float) -> Float
    • beta_variate(Float, Float) -> Float
    • pareto_variate(Float) -> Float
    • vonmises_variate(Float, Float) -> Float
  • Random Boolean Functions
    • percent_true(Float) -> Boolean
    • bernoulli_variate(Float) -> Boolean
  • Inplace Shuffle Algorithms
    • shuffle(List[Any]) -> None
    • knuth_a(List[Any]) -> None
    • fisher_yates(List[Any]) -> None
  • Utilities
    • flatten(Object, *args, Boolean, **kwargs) -> Object
    • smart_clamp(Integer, Integer, Integer) -> Integer
    • distribution_range(Callable, Integer, Integer) -> Callable
    • min_float() -> Float
    • max_float() -> Float
    • min_below() -> Float
    • min_above() -> Float
  • Development Log
  • Test Suite Output
  • Legal Information

Numeric Limits:

  • Integer: 64 bit signed integer.
    • Range: ±9223372036854775807, approximately ±9.2 billion billion
  • Float: 64 bit floating point.
    • Range: ±1.7976931348623157e+308
    • Epsilon Delta: 5e-305 to 5e-324, platform dependent

Random Value Engines

Fortuna.RandomValue

Fortuna.RandomValue(collection: Iterable[Any], zero_cool=random_index, flat=True) -> Callable -> Value Random Value Engine Class that supports dependency injection.

Takes an iterable (tuple) and a distribution function and returns a callable to produce random values from the iterable with the same distribution.

  • @param collection :: Iterable of Values. Tuple recommended.
  • @param zero_cool :: Optional ZeroCool Callable, kwarg only. Default = random_index(). This function must follow the ZeroCool Spec.
  • @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
  • @return :: Callable Object. Callable(*args, **kwargs) -> Value
    • @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
    • @return Value or Value(*args, **kwargs) if the value itself is callable. This is recursive.

RandomValue Dependency Injection: Rare Apples Example

RandomValue supports dependency injection, it is the only Fortuna class to do so. The injected functor must follow the ZeroCool Specification: f(x: int) -> int in [0, x) with any distribution. Many ZeroCool functions are provided, in the following example we'll see front_linear and back_linear used together.

If one of the builtin ZeroCool distributions is required, it is highly recommended to employ QuantumMonty rather than RandomValue. ZeroCool distributions are used here for the demonstration of RandomValue only. QuantumMonty offers the same ZeroCool distributions, but with less overhead. RandomValue is specifically designed for custom dependency injection, where you might design your own distribution and use it with RandomValue.

from Fortuna import RandomValue, front_linear, back_linear


# Data Setup
random_apple = RandomValue((
    "Delicious", 
    "Empire", 
    "Granny Smith", 
    "Honey Crisp", 
    "Macintosh",
), zero_cool=front_linear)

random_fruit = RandomValue((
    lambda: f"Apple, {random_apple()}",
    "Banana",
    "Cherry",
    "Grapes",
    "Orange",
), zero_cool=back_linear)

# Usage
print(random_fruit())
# prints a random 'Fruit' with a compound linear distribution
# where 'Delicious' is the most common 'Apple'
# and 'Apple' is the most rare 'Fruit'

QuantumMonty: Rare Apples Example

Same as above but with QuantumMonty - for syntax comparison.

from Fortuna import QuantumMonty


# Data Setup
random_apple = QuantumMonty((
    "Delicious", 
    "Empire", 
    "Granny Smith", 
    "Honey Crisp", 
    "Macintosh",
)).front_linear

random_fruit = QuantumMonty((
    lambda: f"Apple, {random_apple()}",
    "Banana",
    "Cherry",
    "Grapes",
    "Orange",
)).back_linear

# Usage
print(random_fruit())
# prints a random fruit with the correct compound distribution

Auto Flattening

RandomValue with Auto Flattening

Auto Flattening works with all random generator classes in Fortuna, and it's on by default. Flattening is lazy: it happens at call time as the last step. Flattening is recursive: this allows a nested lambda stack to be collapsed automatically. Flattening is resilient: if for any reason a callable can not be flatted - it will be returned in an un-flattened state without error.

from Fortuna import RandomValue


auto_flat = RandomValue([lambda: 1, lambda: 2, lambda: 3])
print(auto_flat())  # will print the value 1, 2 or 3.
# Note: the lambda will not be called until call time and stays dynamic for the life of the object.

auto_flat_with = RandomValue([lambda x: x, lambda x: x + 1, lambda x:  x + 2])
print(auto_flat_with(2))  # will print the value 2, 3 or 4
# Note: if this is called with no args it will simply return the lambda in an uncalled state.

un_flat = RandomValue([lambda: 1, lambda: 2, lambda: 3], flat=False)
print(un_flat()())  # will print the value 1, 2 or 3, 
# mind the double-double parenthesis, they are required to manually unpack the lambdas

auto_un_flat = RandomValue([lambda x: x, lambda x: x + 1, lambda x:  x + 2], flat=False)
# Note: flat=False is not required here because the lambdas can not be called without input x satisfied.
# It is recommended to specify flat=False if non-flat output is intended.
print(auto_un_flat()(1))  # will print the value 1, 2 or 3, mind the double-double parenthesis.

Mixing Static Objects with Callable Objects

Auto Flattening works with all random generator classes in Fortuna, and it's on by default.

from Fortuna import RandomValue


""" With automatic flattening active, `lambda() -> int` can be treated as an `int`. """
mixed_flat = RandomValue([1, 2, lambda: 3])
print(mixed_flat())  # will print 1, 2 or 3

""" Mixed Anti-pattern """
mixed_un_flat = RandomValue([1, 2, lambda: 3], flat=False) # this is not recommended.
print(mixed_flat())  # will print 1, 2 or "Function <lambda at some_address>"
# This pattern is not recommended because you wont know the nature of what you get back.
# This is almost always not what you want, and it can give rise to messy logic in other areas of your code.

Dynamic Strings

To successfully express a dynamic string, and keep it dynamic for the duration of the program, at least one level of indirection is required. Without a lambda - the f-string would collapse into a static string too soon. This works with all random generator classes in Fortuna.

from Fortuna import RandomValue, d


# d() is a simple dice function, d(n) -> [1, n] flat uniform distribution.
dynamic_string = RandomValue((
    # while the probability of all A == all B == all C, individual probabilities of each possible string will differ based on the number of possible outputs of each category.
    lambda: f"A{d(2)}",  # -> A1 - A2, each are twice as likely as any particular B, and three times as likely as any C.
    lambda: f"B{d(4)}",  # -> B1 - B4, each are half as likely as any particular A, and 3/2 as likely as any C.
    lambda: f"C{d(6)}",  # -> C1 - C6, each are 1/3 as likely as any particular A and 2/3 as likely of any B.
))

print(dynamic_string())  # prints a random dynamic string, generated at call time.

TruffleShuffle

Fortuna.TruffleShuffle(collection: Iterable[Any], flat=True) -> Callable -> Value

  • @param collection :: Iterable of Values. Set recommended but not required.
  • @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
  • @return :: Callable Object. Callable(*args, **kwargs) -> Value
    • @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
    • @return :: Random value from the collection with a Wide Uniform Distribution.

Wide Uniform Distribution: "Wide" refers to the average distance between consecutive occurrences of the same value. The average width of the output distribution will naturally scale up with the size of the collection. The goal of this type of distribution is to keep the output sequence free of clumps or streaks of the same value, while maintaining randomness and uniform probability. This is not the same as a flat uniform distribution. The two distributions over time will be statistically similar for any given set, but the repetitiveness of the output sequence will be very different.

TruffleShuffle, Basic Use

from Fortuna import TruffleShuffle

# Data Setup
list_of_values = { 1, 2, 3, 4, 5, 6 }
truffle_shuffle = TruffleShuffle(list_of_values)

# Usage
print(truffle_shuffle())  # this will print one of the numbers 1-6, 
# repeated calls will produce a wide distribution.

Nesting Dolls

This works with all random generator classes in Fortuna, interchangeably.

from Fortuna import RandomValue, TruffleShuffle

# Data Setup
nesting_dolls = TruffleShuffle((
    RandomValue(("A", "B", "C", "D", "E")),
    RandomValue(("F", "G", "H", "I", "J")),
    RandomValue(("K", "L", "M", "N", "O")),
    RandomValue(("P", "Q", "R", "S", "T")),
))

# Usage
print(nesting_dolls())  
# Prints one of the letters A-T.
# Produces a wide distribution of each category -
# and a flat uniform distribution within each category.

QuantumMonty

Fortuna.QuantumMonty(collection: Iterable[Any], flat=True) -> Callable -> Value

  • @param collection :: Iterable of Values. Tuple recommended.
  • @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
  • @return :: Callable Object with Monty Methods for producing various distributions of the data.
    • @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
    • @return :: Random value from the data. The instance will produce random values from the list using the selected distribution model or "monty". The default monty is the Quantum Monty Algorithm.
from Fortuna import QuantumMonty

# Data Setup
list_of_values = [1, 2, 3, 4, 5, 6]
monty = QuantumMonty(list_of_values)

# Usage
print(monty())               # prints a random value from the list_of_values
                             # uses the default Quantum Monty Algorithm

print(monty.flat_uniform())  # prints a random value from the list_of_values
                             # uses the "flat_uniform" monty
                             # equivalent to random.choice(list_of_values)

The QuantumMonty class represents a diverse collection of strategies for producing random values from a sequence where the output distribution is based on the method you choose. Generally speaking, each value in the sequence will have a probability that is based on its position in the sequence. For example: the "front" monty produces random values where the beginning of the sequence is geometrically more common than the back. Given enough samples the "front" monty will always converge to a 45 degree slope down for any list of unique values.

There are three primary method families: linear, gaussian, and poisson. Each family has three base methods; 'front', 'middle', 'back', plus a 'quantum' method that incorporates all three base methods. The quantum algorithms for each family produce distributions by overlapping the probability waves of the other methods in their family. The Quantum Monty Algorithm incorporates all nine base methods.

import Fortuna

# Data Setup
monty = Fortuna.QuantumMonty(
    ["Alpha", "Beta", "Delta", "Eta", "Gamma", "Kappa", "Zeta"]
)

# Usage
# Each of the following methods will return a random value from the sequence.
# Each method has its own unique distribution model.

""" Flat Base Case """
monty.flat_uniform()        # Flat Uniform Distribution

""" Geometric Positional """
monty.front_linear()        # Linear Descending, Triangle
monty.middle_linear()       # Linear Median Peak, Equilateral Triangle
monty.back_linear()         # Linear Ascending, Triangle
monty.quantum_linear()      # Linear Overlay, 3-way monty.

""" Gaussian Positional """
monty.front_gauss()         # Front Gamma
monty.middle_gauss()        # Scaled Gaussian
monty.back_gauss()          # Reversed Gamma
monty.quantum_gauss()       # Gaussian Overlay, 3-way monty.

""" Poisson Positional """
monty.front_poisson()       # 1/4 Mean Poisson
monty.middle_poisson()      # 1/2 Mean Poisson
monty.back_poisson()        # 3/4 Mean Poisson
monty.quantum_poisson()     # Poisson Overlay, 3-way monty.

""" Quantum Monty Algorithm: Default Monty """
monty()                     # Quantum Monty Algorithm, 9-way monty.
monty.quantum_monty()       #  same as above

Weighted Choice: Base Class

Weighted Choice offers two strategies for selecting random values from a sequence where programmable rarity is desired. Both produce a custom distribution of values based on the weights of the values.

The choice to use one strategy over the other is purely about which one suits you or your data best. Relative weights are easier to understand at a glance. However, many RPG Treasure Tables map rather nicely to a cumulative weighted strategy.

Cumulative Weighted Choice

Fortuna.CumulativeWeightedChoice(weighted_table: Iterable[Tuple[int, Any]], flat=True) -> Callable -> Value

  • @param weighted_table :: Table of weighted pairs. Tuple of Tuples recommended.
  • @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
  • @return :: Callable Instance
    • @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
    • @return :: Random value from the weighted_table, distribution based on the weights of the values.

Note: Logic dictates Cumulative Weights must be unique!

from Fortuna import CumulativeWeightedChoice

# Data Setup
cum_weighted_choice = CumulativeWeightedChoice((
    (7, "Apple"),
    (11, "Banana"),
    (13, "Cherry"),
    (23, "Grape"),
    (26, "Lime"),
    (30, "Orange"),  # same as relative weight 4 because 30 - 26 = 4
))
# Usage
print(cum_weighted_choice())  # prints a weighted random value

Relative Weighted Choice

Fortuna.RelativeWeightedChoice(weighted_table: Iterable[Tuple[int, Any]]) -> Callable -> Value

  • @param weighted_table :: Table of weighted pairs. Tuple of Tuples recommended.
  • @param flat :: Bool. Default: True. Option to automatically flatten callable values with lazy evaluation.
  • @return :: Callable Instance
    • @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
    • @return :: Random value from the weighted_table, distribution based on the weights of the values.
from Fortuna import RelativeWeightedChoice

# Data
population = ["Apple", "Banana", "Cherry", "Grape", "Lime", "Orange"]
rel_weights = [7, 4, 2, 10, 3, 4]

# Setup
rel_weighted_choice = RelativeWeightedChoice(zip(rel_weights, population))

# Usage
print(rel_weighted_choice())  # prints a weighted random value

FlexCat

Fortuna.FlexCat(matrix_data: Matrix, key_bias="front_linear", val_bias="truffle_shuffle", flat=True) -> Callable -> Value

  • @param matrix_data :: Dictionary of Sequences. Dict[str, Iterable[Any]]
  • @parm key_bias :: Default is "front_linear". String indicating the name of the algorithm to use for random key selection.
  • @parm val_bias :: Default is "truffle_shuffle". String indicating the name of the algorithm to use for random value selection.
  • @param flat :: Bool. Default is True. Option to automatically flatten callable values with lazy evaluation.
  • @return :: Callable Instance
    • @param cat_key :: Optional String. Default is None. Key selection by name. If specified, this will override the key_bias for a single call.
    • @param *args, **kwargs :: Optional arguments used to flatten the return Value (below) if Callable.
    • @return :: Value. Returns a random value generated with val_bias from a random sequence generated with key_bias.

FlexCat is like a multi dimensional QuantumMonty.

The constructor takes two optional keyword arguments to specify the algorithms to be used to make random selections. The algorithm specified for selecting a key need not be the same as the one for selecting values. An optional key may be provided at call time to bypass the random key selection. Keys passed in this way must exactly match a key in the Matrix.

By default, FlexCat will use key_bias="front_linear" and val_bias="truffle_shuffle", this will make the top of the data structure geometrically more common than the bottom and it will truffle shuffle the sequence values. This config is known as TopCat, it produces a descending-step, micro-shuffled distribution sequence. Many other combinations are available.

Algorithmic Options: See QuantumMonty & TruffleShuffle for more details.

  • "front_linear", Linear Descending
  • "middle_linear", Linear Median Peak
  • "back_linear", Linear Ascending
  • "quantum_linear", Linear 3-way monty
  • "front_gauss", Gamma Descending
  • "middle_gauss", Scaled Gaussian
  • "back_gauss", Gamma Ascending
  • "quantum_gauss", Gaussian 3-way monty
  • "front_poisson", Front 1/3 Mean Poisson
  • "middle_poisson", Middle Mean Poisson
  • "back_poisson", Back 1/3 Mean Poisson
  • "quantum_poisson", Poisson 3-way monty
  • "quantum_monty", Quantum Monty Algorithm, 9-way monty
  • "flat_uniform", uniform flat distribution
  • "truffle_shuffle", TruffleShuffle wide uniform distribution
from Fortuna import FlexCat, d


#                           |- Collection Generator, does not require lambda.
# Data                      |
matrix_data = {#            $                         |- Dynamic Value Expression
    "Cat_A": (f"A{i}" for i in range(1, 6)),  #       |  Lazy, 1 of 4 possibilities
    "Cat_B": ("B1", "B2", "B3", "B4", "B5"),  #       $  lambda required for dynamic eval
    "Cat_C": ("C1", "C2", "C3", f"C4.{d(2)}", lambda: f"C5.{d(4)}"),
}#   $       $       $              $                        $
#    |       |       |- Value       |                        |- Fair die method: d4
#    |       |                      |
#    |       |- Collection          |- Static Value Expression
#    |                              |  Eager, 1 or 2 permanently
#    |- Collection Key, "cat_key"

#                               |- Collection Algorithm     |- Value Algorithm
# Setup                         $  y-axis                   $  x-axis
flex_cat = FlexCat(matrix_data, key_bias="front_linear", val_bias="flat_uniform")
#    $       $       $
#    |       |       |- Dictionary of Collections
#    |       |
#    |       |- FlexCat Constructor
#    |       
#    |- Callable Random Value Generator

# Usage
flex_cat()  # returns a Value from the Matrix.
flex_cat(cat_key="Cat_B")  # returns a Value specifically from the "Cat_B" Collection.

Random Value Functions

Fortuna.random_value(Sequence[Any]) -> Any

Essentially the same as Random.choice()

  • @param data :: Sequence of Values
  • @return :: Random value from the sequence. Flat uniform distribution.

Fortuna.cumulative_weighted_choice(weighted_table: Sequence[Tuple[int, Any]]) -> Any

Similar to Random.choices()

  • @param weighted_table :: Sequence of weighted value pairs. [(w1, v1), (w2, v2)...]
  • @return :: Returns a random value. Distribution depends on weights.

Random Integer Functions

Fortuna.random_below(limit: int) -> int

  • @param limit :: Any 64bit Integer
  • @return :: Returns a random integer in the range...
    • random_below(N) -> [0, N) for positive limit.
    • random_below(N) -> (N, 0] for negative limit.
    • random_below(0) -> 0 Always returns zero when limit is zero
  • Flat uniform distribution.

Fortuna.random_int(left_limit: int, right_limit: int) -> int

Essentially the same as Random.randint()

  • @param left_limit :: Any Integer
  • @param right_limit :: Any Integer
  • @return :: Returns a random integer in the range [left_limit, right_limit]
    • random_int(1, 10) -> [1, 10]
    • random_int(10, 1) -> [1, 10] same as above.
    • random_int(A, B) Always returns A when A == B
  • Flat uniform distribution.

Fortuna.random_range(start: int, stop: int = 0, step: int = 1) -> int

Essentially the same as Random.randrange()

  • @param start :: Required starting point.
    • random_range(0) -> [0]
    • random_range(10) -> [0, 10) from 0 to 9. Same as Fortuna.random_index(N)
    • random_range(-10) -> [-10, 0) from -10 to -1. Same as Fortuna.random_index(-N)
  • @param stop :: Zero by default. Optional range bound. With at least two arguments, the order of the first two does not matter.
    • random_range(0, 0) -> [0]
    • random_range(0, 10) -> [0, 10) from 0 to 9.
    • random_range(10, 0) -> [0, 10) same as above.
  • @param step :: One by default. Optional step size.
    • random_range(0, 0, 0) -> [0]
    • random_range(0, 10, 2) -> [0, 10) by 2 even numbers from 0 to 8.
    • The sign of the step parameter controls the phase of the output. Negative stepping will flip the inclusively.
    • random_range(0, 10, -1) -> (0, 10] starts at 10 and ranges down to 1.
    • random_range(10, 0, -1) -> (0, 10] same as above.
    • random_range(10, 10, 0) -> [10] step size or range size of zero always returns the first parameter.
  • @return :: Returns a random integer in the range [A, B) by increments of C.
  • Flat uniform distribution.

Fortuna.d(sides: int) -> int

Represents a single roll of a given size die.

  • @param sides :: Represents the size or number of sides, most commonly six.
  • @return :: Returns a random integer in the range [1, sides].
  • Flat uniform distribution.

Fortuna.dice(rolls: int, sides: int) -> int

Represents the sum total of multiple rolls of the same size die.

  • @param rolls :: Represents the number of times to roll the die.
  • @param sides :: Represents the die size or number of sides, most commonly six.
  • @return :: Returns a random integer in range [X, Y] where X = rolls and Y = rolls * sides.
  • Geometric distribution based on the number and size of the dice rolled.
  • Complexity scales primarily with the number of rolls, not the size of the dice.

Fortuna.plus_or_minus(number: int) -> int

  • @param number :: input to determine the output distribution range.
  • @return :: Returns a random integer in range [-number, number].
  • Flat uniform distribution.

Fortuna.plus_or_minus_linear(number: int) -> int

  • @param number :: input to determine the output distribution range.
  • @return :: Returns a random integer in range [-number, number].
  • Linear geometric, 45 degree triangle distribution centered on zero.

Fortuna.plus_or_minus_gauss(number: int) -> int

  • @param number :: input to determine the output distribution range.
  • @return :: Returns a random integer in range [-number, number].
  • Stretched gaussian distribution centered on zero.

Fortuna.binomial_variate(number_of_trials: int, probability: float) -> int

  • Based on the idea of flipping a coin and counting how many heads come up after some number of flips.
  • @param number_of_trials :: how many times to flip a coin.
  • @param probability :: how likely heads will be flipped. 0.5 is a fair coin. 1.0 is a double headed coin.
  • @return :: count of how many heads came up.

Fortuna.negative_binomial_variate(trial_successes: int, probability: float) -> int

  • Based on the idea of flipping a coin as long as it takes to succeed.
  • @param trial_successes :: the required number of heads flipped to succeed.
  • @param probability :: how likely heads will be flipped. 0.50 is a fair coin.
  • @return :: the count of how many tails came up before the required number of heads.

Fortuna.geometric_variate(probability: float) -> int

  • Same as random_negative_binomial(1, probability).

Fortuna.poisson_variate(mean: float) -> int

  • @param mean :: sets the average output of the function.
  • @return :: random integer, poisson distribution centered on the mean.

Random Index, ZeroCool Specification

ZeroCool Methods are used to generate random Sequence indices.

ZeroCool methods must have the following properties:

  • Any distribution model is acceptable such that...
  • The method or function must take exactly one Integer parameter N.
  • The method returns a random int in range [0, N) for positive values of N.
  • The method returns a random int in range [N, 0) for negative values of N.
  • This symmetry matches how python can index a list from the back for negative values or the front for positive values of N.
from Fortuna import random_index


some_list = [i for i in range(100)] # [0..99]

print(some_list[random_index(10)])  # prints one of the first 10 items of some_list, [0, 9]
print(some_list[random_index(-10)])  # prints one of the last 10 items of some_list, [90, 99]

ZeroCool Methods

  • Fortuna.random_index(size: int) -> int Flat uniform distribution
  • Fortuna.front_gauss(size: int) -> int Gamma Distribution: Front Peak
  • Fortuna.middle_gauss(size: int) -> int Stretched Gaussian Distribution: Median Peak
  • Fortuna.back_gauss(size: int) -> int Gamma Distribution: Back Peak
  • Fortuna.quantum_gauss(size: int) -> int Quantum Gaussian: Three-way Monty
  • Fortuna.front_poisson(size: int) -> int Poisson Distribution: Front 1/3 Peak
  • Fortuna.middle_poisson(size: int) -> int Poisson Distribution: Middle Peak
  • Fortuna.back_poisson(size: int) -> int Poisson Distribution: Back 1/3 Peak
  • Fortuna.quantum_poisson(size: int) -> int Quantum Poisson: Three-way Monty
  • Fortuna.front_geometric(size: int) -> int Linear Geometric: 45 Degree Front Peak
  • Fortuna.middle_geometric(size: int) -> int Linear Geometric: 45 Degree Middle Peak
  • Fortuna.back_geometric(size: int) -> int Linear Geometric: 45 Degree Back Peak
  • Fortuna.quantum_geometric(size: int) -> int Quantum Geometric: Three-way Monty
  • Fortuna.quantum_monty(size: int) -> int Quantum Monty: Nine-way Monty
from Fortuna import front_gauss, middle_gauss, back_gauss, quantum_gauss


some_list = [i for i in range(100)]

# Each of the following prints one of the first 10 items of some_list with the appropriate distribution
print(some_list[front_gauss(10)])
print(some_list[middle_gauss(10)])
print(some_list[back_gauss(10)])
print(some_list[quantum_gauss(10)])

# Each of the following prints one of the last 10 items of some_list with the appropriate distribution
print(some_list[front_gauss(-10)])  
print(some_list[middle_gauss(-10)])  
print(some_list[back_gauss(-10)])  
print(some_list[quantum_gauss(-10)])

Random Float Functions

Fortuna.canonical() -> float

  • @return :: random float in range [0.0, 1.0), flat uniform.

Fortuna.random_float(a: Float, b: Float) -> Float

  • @param a :: Float input
  • @param b :: Float input
  • @return :: random Float in range [a, b), flat uniform distribution.

Fortuna.triangular(low: Float, high: Float, mode: Float) -> Float

  • @param low :: Float, minimum output
  • @param high :: Float, maximum output
  • @param mode :: Float, most common output, mode must be in range [low, high]
  • @return :: random Float in range [low, high] with a linear distribution about the mode.

Fortuna.normal_variate(mean: Float, std_dev: Float) -> Float

  • @param mean :: Float, sets the average output of the function.
  • @param std_dev :: Float, standard deviation. Specifies spread of data from the mean.

Fortuna.lognormal_variate(log_mean: Float, log_deviation: Float) -> Float

  • @param log_mean :: Float, sets the log of the mean of the function.
  • @param log_deviation :: Float, log of the standard deviation. Specifies spread of data from the mean.

Fortuna.exponential_variate(lambda_rate: Float) -> Float

  • Produces random non-negative floating-point values, distributed according to probability density function.
  • @param lambda_rate :: Float, λ constant rate of a random event per unit of time/distance.
  • @return :: Float, the time/distance until the next random event. For example, this distribution describes the time between the clicks of a Geiger counter or the distance between point mutations in a DNA strand.

Fortuna.gamma_variate(shape: Float, scale: Float) -> Float

  • Generalization of the exponential distribution.
  • Produces random positive floating-point values, distributed according to probability density function.
  • @param shape :: Float, α the number of independent exponentially distributed random variables.
  • @param scale :: Float, β the scale factor or the mean of each of the distributed random variables.
  • @return :: Float, the sum of α independent exponentially distributed random variables, each of which has a mean of β.

Fortuna.weibull_variate(shape: Float, scale: Float) -> Float

  • Generalization of the exponential distribution.
  • Similar to the gamma distribution but uses a closed form distribution function.
  • Popular in reliability and survival analysis.

Fortuna.extreme_value_variate(location: Float, scale: Float) -> Float

  • Based on Extreme Value Theory.
  • Used for statistical models of the magnitude of earthquakes and volcanoes.

Fortuna.chi_squared_variate(degrees_of_freedom: Float) -> Float

  • Used with the Chi Squared Test and Null Hypotheses to test if sample data fits an expected distribution.

Fortuna.cauchy_variate(location: Float, scale: Float) -> Float

  • @param location :: Float, specifies the location of the peak. The default value is 0.0.
  • @param scale :: Float, represents the half-width at half-maximum. The default value is 1.0.
  • @return :: Float, Continuous Distribution.

Fortuna.fisher_f_variate(degrees_of_freedom_1: Float, degrees_of_freedom_2: Float) -> Float

  • F distributions often arise when comparing ratios of variances.

Fortuna.student_t_variate(degrees_of_freedom: Float) -> Float

  • T distribution. Same as a normal distribution except it uses the sample standard deviation rather than the population standard deviation.
  • As degrees_of_freedom goes to infinity it converges with the normal distribution.

Fortuna.beta_variate(alpha: Float, beta: Float) -> Float

Fortuna.pareto_variate(alpha: Float) -> Float

Fortuna.vonmises_variate(mu: Float, kappa: Float) -> Float

Random Truth Functions

Fortuna.percent_true(truth_factor: Float = 50.0) -> Boolean

  • Produces a distribution of boolean values.
  • @param truth_factor :: Float, probability of True as a percentage. Default is 50 percent. Expected input range: [0.0, 100.0], clamped.
  • @return :: Produces True or False based on the truth_factor as a percent of true.

Fortuna.bernoulli_variate(ratio_of_truth: Float) -> Boolean

  • Produces a Bernoulli distribution of boolean values.
  • @param ratio_of_truth :: Float, the probability of True as a ratio. Expected input range: [0.0, 1.0], clamped.
  • @return :: True or False

Shuffle Algorithm

Fortuna.shuffle(array: List[Any]) -> None

  • Knuth B Shuffle Algorithm. Destructive, in-place shuffle.
  • @param array :: List to be shuffled.
  • @return :: None

Fortuna.knuth_a(array: List[Any]) -> None

  • Knuth A Shuffle Algorithm. Destructive, in-place shuffle.
  • @param array :: List to be shuffled.
  • @return :: None

Fortuna.fisher_yates(array: List[Any]) -> None

  • Fisher Yates Shuffle Algorithm. Destructive, in-place shuffle.
  • @param array :: List to be shuffled.
  • @return :: None

Utilities

Fortuna.flatten(maybe_callable, *args, flat=True, **kwargs) -> flatten(maybe_callable(*args, **kwargs))

  • Recursively calls the input object and returns the result. The arguments are only passed in on the first evaluation.
  • If the maybe_callable is not callable it is simply returned without error.
  • Conceptually this is somewhat like collapsing the wave function. Often used as the last step in lazy evaluation.
  • @param maybe_callable :: Any Object that might be callable.
  • @param flat :: Boolean, default is True. Optional, keyword only. Disables flattening if flat is set to False, conceptually turns flatten into the identity function.
  • @param *args, **kwargs :: Optional arguments used to flatten the maybe_callable object.
  • @return :: Recursively Flattened Object.

Fortuna.smart_clamp(target: int, lo: int, hi: int) -> int

  • Used to clamp the target in range [lo, hi] by saturating the bounds.
  • Essentially the same as median for exactly three integers.
  • @return :: Returns the middle value, input order does not matter.

Fortuna.distribution_range(func: Callable, lo: int, hi: int) -> Callable Higher-order function for producing integer distribution ranges based on a ZeroCool function. If given a function like random_below, this function will produce random values with the same distribution but in the range lo to hi, rather than from zero to N-1. Essentially, this turns a function like random_below(B+1) into random_int(A, B).

  • @param func: ZeroCool random distribution, F(N) -> [0, N-1]
  • @param lo: minimum limit
  • @param hi: maximum limit
  • @return: Callable() -> int
    • @return: random value in range [lo, hi]

Fortuna Development Log

Fortuna 4.1.4
  • Updates requirements.txt
Fortuna 4.1.3
  • Small refactoring
Fortuna 4.1.2
  • Updates tests
Fortuna 4.1.1
  • Fixes some minor typos
Fortuna 4.1.0
  • Adds distribution_range utility
Fortuna 4.0.0
  • RNG merge, adds all features from the RNG library that were not already here
Fortuna 3.20.3
  • Minor low level Storm update
  • Minor test tweaks
Fortuna 3.20.2
  • adds example: fortuna_extras/multi_threading.py
Fortuna 3.20.1
  • fixes typos
Fortuna 3.20.0
  • Updates Storm: 3.4.0: Storm is now Thread Safe
  • Adds platform limit meters
  • Deprecates MultiChoice
Fortuna 3.19.1
  • fixes typos
Fortuna 3.19.0
  • Storm 3.3.6 update
Fortuna 3.18.2
  • Fixes typos
Fortuna 3.18.1
  • Installer update
Fortuna 3.18.0
  • Performance Enhancement
  • Storm 3.3.4 update
  • updated test output
Fortuna 3.17.13
  • Fixes some typos
Fortuna 3.17.12
  • Adds pyproject.toml file to ease the installation process
Fortuna 3.17.11
  • Documentation Update
Fortuna 3.17.10
  • Documentation Update
Fortuna 3.17.9
  • Typo
Fortuna 3.17.8
  • Typo
Fortuna 3.17.7
  • Typo
Fortuna 3.17.6
  • Documentation update
Fortuna 3.17.5
  • Typos
Fortuna 3.17.4
  • Reorganized
Fortuna 3.17.3
  • Streamlining: dropped auxiliary packages.
Fortuna 3.17.2
  • Documentation update
Fortuna 3.17.1
  • Update for backwards compatibility for platforms that do not support std::clamp.
Fortuna 3.17.0, internal
  • Installation issue detected on some platforms that lack std::clamp.
Fortuna 3.16.9
  • Documentation Update
Fortuna 3.16.8
  • TruffleShuffle update
  • Adds truffle_shuffle()
Fortuna 3.16.7
  • Documentation Update
Fortuna 3.16.6
  • Adds distribution_range()
Fortuna 3.16.5
  • Documentation Update
Fortuna 3.16.4
  • Documentation Update
Fortuna 3.16.3
  • Major TruffleShuffle performance upgrade
Fortuna 3.16.2 - Internal
  • Testing
Fortuna 3.16.1
  • Documentation Update
Fortuna 3.16.0
  • Storm 3.3.2 Update
Fortuna 3.15.1
  • Docs updated
Fortuna 3.15.0
  • Type Hints Clarified via Typing Module
Fortuna 3.14.1
  • Fixed another installer bug affecting gcc.
Fortuna 3.14.0
  • Minor TruffleShuffle Update
  • Fisher Yates, and Knuth A Shuffle Algorithms added for comparison with Fortuna.shuffle()
    • Some platforms may prefer one over another. Intel favors Knuth B (Fortuna.shuffle) by more than double.
Fortuna 3.13.0 - Internal
  • Development & Testing Environment Updated to Python 3.8
    • Python3.8 brings a 10-20% performance boost over all.
  • RandomValue API redesign. Dependency Injection is now handled at instantiation rather than call time.
Fortuna 3.12.2
  • Installer update.
  • Clarified the docs for MultiChoice.
Fortuna 3.12.1
  • MultiChoice now accepts a default.
Fortuna 3.12.0
  • MultiChoice added
Fortuna 3.10.2
  • Doc string update for clarity.
  • Test update
  • MonkeyScope Update
Fortuna 3.10.1
  • Documentation fix, RandomValue examples are now together.
Fortuna 3.10.0
  • Fortuna now includes both RNG and Pyewacket.
  • Documentation update.
Fortuna 3.9.11
  • Installer Update, properly installs MonkeyScope as intended.
Fortuna 3.9.10
  • Fixed Typos
Fortuna 3.9.9
  • Docs Update
Fortuna 3.9.8
  • Test Update
Fortuna 3.9.7
  • Tests for RNG and Pyewacket are now included in fortuna_extras package.
Fortuna 3.9.6
  • Documentation update.
Fortuna 3.9.5
  • Storm 3.2.2 Update.
Fortuna 3.9.4
  • Documentation update.
Fortuna 3.9.3
  • MonkeyScope update, 10% test suite performance improvement.
Fortuna 3.9.2
  • Documentation update.
Fortuna 3.9.1
  • flatten_with has been renamed to flatten. This should be non-breaking, please report any bugs.
Fortuna 3.9.0 - Internal
  • Added many doc strings.
  • Corrected many typos in Docs.
  • The flatten function has been fully replaced by flatten_with.
    • All classes that support automatic flattening can now accept arbitrary arguments at call time.
    • flatten_with will be renamed to flatten in a future release.
Fortuna 3.8.9
  • Fixed some typos.
Fortuna 3.8.8
  • Fortuna now supports Python notebooks, python3.6 or higher required.
Fortuna 3.8.7
  • Storm Update
Fortuna 3.8.6
  • Attempting to make Fortuna compatible with Python Notebooks.
Fortuna 3.8.5
  • Installer Config Update
Fortuna 3.8.4
  • Installer Config Update
Fortuna 3.8.3
  • Storm Update 3.2.0
Fortuna 3.8.2
  • More Typo Fix
Fortuna 3.8.1
  • Typo Fix
Fortuna 3.8.0
  • Major API Update, several utilities have been deprecated. See MonkeyScope for replacements.
    • distribution
    • distribution_timer
    • timer
Fortuna 3.7.7
  • Documentation Update
Fortuna 3.7.6
  • Install script update.
Fortuna 3.7.5 - internal
  • Storm 3.1.1 Update
  • Added triangular function.
Fortuna 3.7.4
  • Fixed: missing header in the project manifest, this may have caused building from source to fail.
Fortuna 3.7.3
  • Storm Update
Fortuna 3.7.2
  • Storm Update
Fortuna 3.7.1
  • Bug fixes
Fortuna 3.7.0 - internal
  • flatten_with() is now the default flattening algorithm for all Fortuna classes.
Fortuna 3.6.5
  • Documentation Update
  • RandomValue: New flatten-with-arguments functionality.
Fortuna 3.6.4
  • RandomValue added for testing
Fortuna 3.6.3
  • Developer Update
Fortuna 3.6.2
  • Installer Script Update
Fortuna 3.6.1
  • Documentation Update
Fortuna 3.6.0
  • Storm Update
  • Test Update
  • Bug fix for random_range(), negative stepping is now working as intended. This bug was introduced in 3.5.0.
  • Removed Features
    • lazy_cat(): use QuantumMonty class instead.
    • flex_cat(): use FlexCat class instead.
    • truffle_shuffle(): use TruffleShuffle class instead.
Fortuna 3.5.3 - internal
  • Features added for testing & development
    • ActiveChoice class
    • random_rotate() function
Fortuna 3.5.2
  • Documentation Updates
Fortuna 3.5.1
  • Test Update
Fortuna 3.5.0
  • Storm Update
  • Minor Bug Fix: Truffle Shuffle
  • Deprecated Features
    • lazy_cat(): use QuantumMonty class instead.
    • flex_cat(): use FlexCat class instead.
    • truffle_shuffle(): use TruffleShuffle class instead.
Fortuna 3.4.9
  • Test Update
Fortuna 3.4.8
  • Storm Update
Fortuna 3.4.7
  • Bug fix for analytic_continuation.
Fortuna 3.4.6
  • Docs Update
Fortuna 3.4.5
  • Docs Update
  • Range Tests Added, see extras folder.
Fortuna 3.4.4
  • ZeroCool Algorithm Bug Fixes
  • Typos Fixed
Fortuna 3.4.3
  • Docs Update
Fortuna 3.4.2
  • Typos Fixed
Fortuna 3.4.1
  • Major Bug Fix: random_index()
Fortuna 3.4.0 - internal
  • ZeroCool Poisson Algorithm Family Updated
Fortuna 3.3.8 - internal
  • Docs Update
Fortuna 3.3.7
  • Fixed Performance Bug: ZeroCool Linear Algorithm Family
Fortuna 3.3.6
  • Docs Update
Fortuna 3.3.5
  • ABI Updates
  • Bug Fixes
Fortuna 3.3.4
  • Examples Update
Fortuna 3.3.3
  • Test Suite Update
Fortuna 3.3.2 - internal
  • Documentation Update
Fortuna 3.3.1 - internal
  • Minor Bug Fix
Fortuna 3.3.0 - internal
  • Added plus_or_minus_gauss(N: int) -> int random int in range [-N, N] Stretched Gaussian Distribution
Fortuna 3.2.3
  • Small Typos Fixed
Fortuna 3.2.2
  • Documentation update.
Fortuna 3.2.1
  • Small Typo Fixed
Fortuna 3.2.0
  • API updates:
    • QunatumMonty.uniform -> QunatumMonty.flat_uniform
    • QunatumMonty.front -> QunatumMonty.front_linear
    • QunatumMonty.middle -> QunatumMonty.middle_linear
    • QunatumMonty.back -> QunatumMonty.back_linear
    • QunatumMonty.quantum -> QunatumMonty.quantum_linear
    • randindex -> random_index
    • randbelow -> random_below
    • randrange -> random_range
    • randint -> random_int
Fortuna 3.1.0
  • discrete() has been removed, see Weighted Choice.
  • lazy_cat() added.
  • All ZeroCool methods have been raised to top level API, for use with lazy_cat()
Fortuna 3.0.1
  • minor typos.
Fortuna 3.0.0
  • Storm 2 Rebuild.
Fortuna 2.1.1
  • Small bug fixes.
  • Test updates.
Fortuna 2.1.0, Major Feature Update
  • Fortuna now includes the best of RNG and Pyewacket.
Fortuna 2.0.3
  • Bug fix.
Fortuna 2.0.2
  • Clarified some documentation.
Fortuna 2.0.1
  • Fixed some typos.
Fortuna 2.0.0b1-10
  • Total rebuild. New RNG Storm Engine.
Fortuna 1.26.7.1
  • README updated.
Fortuna 1.26.7
  • Small bug fix.
Fortuna 1.26.6
  • Updated README to reflect recent changes to the test script.
Fortuna 1.26.5
  • Fixed small bug in test script.
Fortuna 1.26.4
  • Updated documentation for clarity.
  • Fixed a minor typo in the test script.
Fortuna 1.26.3
  • Clean build.
Fortuna 1.26.2
  • Fixed some minor typos.
Fortuna 1.26.1
  • Release.
Fortuna 1.26.0 beta 2
  • Moved README and LICENSE files into fortuna_extras folder.
Fortuna 1.26.0 beta 1
  • Dynamic version scheme implemented.
  • The Fortuna Extension now requires the fortuna_extras package, previously it was optional.
Fortuna 1.25.4
  • Fixed some minor typos in the test script.
Fortuna 1.25.3
  • Since version 1.24 Fortuna requires Python 3.7 or higher. This patch corrects an issue where the setup script incorrectly reported requiring Python 3.6 or higher.
Fortuna 1.25.2
  • Updated test suite.
  • Major performance update for TruffleShuffle.
  • Minor performance update for QuantumMonty & FlexCat: cycle monty.
Fortuna 1.25.1
  • Important bug fix for TruffleShuffle, QuantumMonty and FlexCat.
Fortuna 1.25
  • Full 64bit support.
  • The Distribution & Performance Tests have been redesigned.
  • Bloat Control: Two experimental features have been removed.
    • RandomWalk
    • CatWalk
  • Bloat Control: Several utility functions have been removed from the top level API. These function remain in the Fortuna namespace for now, but may change in the future without warning.
    • stretch_bell, internal only.
    • min_max, not used anymore.
    • analytic_continuation, internal only.
    • flatten, internal only.
Fortuna 1.24.3
  • Low level refactoring, non-breaking patch.
Fortuna 1.24.2
  • Setup config updated to improve installation.
Fortuna 1.24.1
  • Low level patch to avoid potential ADL issue. All low level function calls are now qualified.
Fortuna 1.24
  • Documentation updated for even more clarity.
  • Bloat Control: Two naïve utility functions that are no longer used in the module have been removed.
    • n_samples -> use a list comprehension instead. [f(x) for _ in range(n)]
    • bind -> use a lambda instead. lambda: f(x)
Fortuna 1.23.7
  • Documentation updated for clarity.
  • Minor bug fixes.
  • TruffleShuffle has been redesigned slightly, it now uses a random rotate instead of swap.
  • Custom __repr__ methods have been added to each class.
Fortuna 1.23.6
  • New method for QuantumMonty: quantum_not_monty - produces the upside down quantum_monty.
  • New bias option for FlexCat: not_monty.
Fortuna 1.23.5.1
  • Fixed some small typos.
Fortuna 1.23.5
  • Documentation updated for clarity.
  • All sequence wrappers can now accept generators as input.
  • Six new functions added:
    • random_float() -> float in range [0.0..1.0) exclusive, uniform flat distribution.
    • percent_true_float(num: float) -> bool, Like percent_true but with floating point precision.
    • plus_or_minus_linear_down(num: int) -> int in range [-num..num], upside down pyramid.
    • plus_or_minus_curve_down(num: int) -> int in range [-num..num], upside down bell curve.
    • mostly_not_middle(num: int) -> int in range [0..num], upside down pyramid.
    • mostly_not_center(num: int) -> int in range [0..num], upside down bell curve.
  • Two new methods for QuantumMonty:
    • mostly_not_middle
    • mostly_not_center
  • Two new bias options for FlexCat, either can be used to define x and/or y axis bias:
    • not_middle
    • not_center
Fortuna 1.23.4.2
  • Fixed some minor typos in the README.md file.
Fortuna 1.23.4.1
  • Fixed some minor typos in the test suite.
Fortuna 1.23.4
  • Fortuna is now Production/Stable!
  • Fortuna and Fortuna Pure now use the same test suite.
Fortuna 0.23.4, first release candidate.
  • RandomCycle, BlockCycle and TruffleShuffle have been refactored and combined into one class: TruffleShuffle.
  • QuantumMonty and FlexCat will now use the new TruffleShuffle for cycling.
  • Minor refactoring across the module.
Fortuna 0.23.3, internal
  • Function shuffle(arr: list) added.
Fortuna 0.23.2, internal
  • Simplified the plus_or_minus_curve(num: int) function, output will now always be bounded to the range [-num..num].
  • Function stretched_bell(num: int) added, this matches the previous behavior of an unbounded plus_or_minus_curve.
Fortuna 0.23.1, internal
  • Small bug fixes and general clean up.
Fortuna 0.23.0
  • The number of test cycles in the test suite has been reduced to 10,000 (down from 100,000). The performance of the pure python implementation and the c-extension are now directly comparable.
  • Minor tweaks made to the examples in .../fortuna_extras/fortuna_examples.py
Fortuna 0.22.2, experimental features
  • BlockCycle class added.
  • RandomWalk class added.
  • CatWalk class added.
Fortuna 0.22.1
  • Fortuna classes no longer return lists of values, this behavior has been extracted to a free function called n_samples.
Fortuna 0.22.0, experimental features
  • Function bind added.
  • Function n_samples added.
Fortuna 0.21.3
  • Flatten will no longer raise an error if passed a callable item that it can't call. It correctly returns such items in an uncalled state without error.
  • Simplified .../fortuna_extras/fortuna_examples.py - removed unnecessary class structure.
Fortuna 0.21.2
  • Fix some minor bugs.
Fortuna 0.21.1
  • Fixed a bug in .../fortuna_extras/fortuna_examples.py
Fortuna 0.21.0
  • Function flatten added.
  • Flatten: The Fortuna classes will recursively unpack callable objects in the data set.
Fortuna 0.20.10
  • Documentation updated.
Fortuna 0.20.9
  • Minor bug fixes.
Fortuna 0.20.8, internal
  • Testing cycle for potential new features.
Fortuna 0.20.7
  • Documentation updated for clarity.
Fortuna 0.20.6
  • Tests updated based on recent changes.
Fortuna 0.20.5, internal
  • Documentation updated based on recent changes.
Fortuna 0.20.4, internal
  • WeightedChoice (both types) can optionally return a list of samples rather than just one value, control the length of the list via the n_samples argument.
Fortuna 0.20.3, internal
  • RandomCycle can optionally return a list of samples rather than just one value, control the length of the list via the n_samples argument.
Fortuna 0.20.2, internal
  • QuantumMonty can optionally return a list of samples rather than just one value, control the length of the list via the n_samples argument.
Fortuna 0.20.1, internal
  • FlexCat can optionally return a list of samples rather than just one value, control the length of the list via the n_samples argument.
Fortuna 0.20.0, internal
  • FlexCat now accepts a standard dict as input. The ordered(ness) of dict is now part of the standard in Python 3.7.1. Previously FlexCat required an OrderedDict, now it accepts either and treats them the same.
Fortuna 0.19.7
  • Fixed bug in .../fortuna_extras/fortuna_examples.py.
Fortuna 0.19.6
  • Updated documentation formatting.
  • Small performance tweak for QuantumMonty and FlexCat.
Fortuna 0.19.5
  • Minor documentation update.
Fortuna 0.19.4
  • Minor update to all classes for better debugging.
Fortuna 0.19.3
  • Updated plus_or_minus_curve to allow unbounded output.
Fortuna 0.19.2
  • Internal development cycle.
  • Minor update to FlexCat for better debugging.
Fortuna 0.19.1
  • Internal development cycle.
Fortuna 0.19.0
  • Updated documentation for clarity.
  • MultiCat has been removed, it is replaced by FlexCat.
  • Mostly has been removed, it is replaced by QuantumMonty.
Fortuna 0.18.7
  • Fixed some more README typos.
Fortuna 0.18.6
  • Fixed some README typos.
Fortuna 0.18.5
  • Updated documentation.
  • Fixed another minor test bug.
Fortuna 0.18.4
  • Updated documentation to reflect recent changes.
  • Fixed some small test bugs.
  • Reduced default number of test cycles to 10,000 - down from 100,000.
Fortuna 0.18.3
  • Fixed some minor README typos.
Fortuna 0.18.2
  • Fixed a bug with Fortuna Pure.
Fortuna 0.18.1
  • Fixed some minor typos.
  • Added tests for .../fortuna_extras/fortuna_pure.py
Fortuna 0.18.0
  • Introduced new test format, now includes average call time in nanoseconds.
  • Reduced default number of test cycles to 100,000 - down from 1,000,000.
  • Added pure Python implementation of Fortuna: .../fortuna_extras/fortuna_pure.py
  • Promoted several low level functions to top level.
    • zero_flat(num: int) -> int
    • zero_cool(num: int) -> int
    • zero_extreme(num: int) -> int
    • max_cool(num: int) -> int
    • max_extreme(num: int) -> int
    • analytic_continuation(func: staticmethod, num: int) -> int
    • min_max(num: int, lo: int, hi: int) -> int
Fortuna 0.17.3
  • Internal development cycle.
Fortuna 0.17.2
  • User Requested: dice() and d() functions now support negative numbers as input.
Fortuna 0.17.1
  • Fixed some minor typos.
Fortuna 0.17.0
  • Added QuantumMonty to replace Mostly, same default behavior with more options.
  • Mostly is depreciated and may be removed in a future release.
  • Added FlexCat to replace MultiCat, same default behavior with more options.
  • MultiCat is depreciated and may be removed in a future release.
  • Expanded the Treasure Table example in .../fortuna_extras/fortuna_examples.py
Fortuna 0.16.2
  • Minor refactoring for WeightedChoice.
Fortuna 0.16.1
  • Redesigned fortuna_examples.py to feature a dynamic random magic item generator.
  • Raised cumulative_weighted_choice function to top level.
  • Added test for cumulative_weighted_choice as free function.
  • Updated MultiCat documentation for clarity.
Fortuna 0.16.0
  • Pushed distribution_timer to the .pyx layer.
  • Changed default number of iterations of tests to 1 million, up form 1 hundred thousand.
  • Reordered tests to better match documentation.
  • Added Base Case Fortuna.fast_rand_below.
  • Added Base Case Fortuna.fast_d.
  • Added Base Case Fortuna.fast_dice.
Fortuna 0.15.10
  • Internal Development Cycle
Fortuna 0.15.9
  • Added Base Cases for random_value()
  • Added Base Case for randint()
Fortuna 0.15.8
  • Clarified MultiCat Test
Fortuna 0.15.7
  • Fixed minor typos.
Fortuna 0.15.6
  • Fixed minor typos.
  • Simplified MultiCat example.
Fortuna 0.15.5
  • Added MultiCat test.
  • Fixed some minor typos in docs.
Fortuna 0.15.4
  • Performance optimization for both WeightedChoice() variants.
  • Cython update provides small performance enhancement across the board.
  • Compilation now leverages Python3 all the way down.
  • MultiCat pushed to the .pyx layer for better performance.
Fortuna 0.15.3
  • Reworked the MultiCat example to include several randomizing strategies working in concert.
  • Added Multi Dice 10d10 performance tests.
  • Updated sudo code in documentation to be more pythonic.
Fortuna 0.15.2
  • Fixed: Linux installation failure.
  • Added: complete source files to the distribution (.cpp .hpp .pyx).
Fortuna 0.15.1
  • Updated & simplified distribution_timer in fortuna_tests.py
  • Readme updated, fixed some typos.
  • Known issue preventing successful installation on some linux platforms.
Fortuna 0.15.0
  • Performance tweaks.
  • Readme updated, added some details.
Fortuna 0.14.1
  • Readme updated, fixed some typos.
Fortuna 0.14.0
  • Fixed a bug where the analytic continuation algorithm caused a rare issue during compilation on some platforms.
Fortuna 0.13.3
  • Fixed Test Bug: percent sign was missing in output distributions.
  • Readme updated: added update history, fixed some typos.
Fortuna 0.13.2
  • Readme updated for even more clarity.
Fortuna 0.13.1
  • Readme updated for clarity.
Fortuna 0.13.0
  • Minor Bug Fixes.
  • Readme updated for aesthetics.
  • Added Tests: .../fortuna_extras/fortuna_tests.py
Fortuna 0.12.0
  • Internal test for future update.
Fortuna 0.11.0
  • Initial Release: Public Beta
Fortuna 0.10.0
  • Module name changed from Dice to Fortuna
Dice 0.1.x - 0.9.x
  • Experimental Phase

Distribution and Performance Tests

Testbed:

  • Hardware: 2.3-4.8Ghz 8-core i9
  • Software: MacOS 10.15.7, Python 3.8, MonkeyScope: Fortuna, Storm 3.4.2
MonkeyScope: Fortuna Quick Test

Random Sequence Values:

some_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Base Case
Output Analysis: Random.choice(some_list)
Typical Timing: 378 ± 19 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 5
 Maximum: 9
 Mean: 4.491
 Std Deviation: 2.8460532354506336
Distribution of 100000 samples:
 0: 9.995%
 1: 9.924%
 2: 9.876%
 3: 10.057%
 4: 9.986%
 5: 10.002%
 6: 10.02%
 7: 10.026%
 8: 10.062%
 9: 10.052%

Output Analysis: random_value(some_list)
Typical Timing: 64 ± 9 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 4
 Maximum: 9
 Mean: 4.4
 Std Deviation: 2.871279199981124
Distribution of 100000 samples:
 0: 10.046%
 1: 9.923%
 2: 10.109%
 3: 9.931%
 4: 9.963%
 5: 10.05%
 6: 10.004%
 7: 9.889%
 8: 10.121%
 9: 9.964%


Wide Distribution

Truffle = TruffleShuffle(some_list)
Output Analysis: Truffle()
Typical Timing: 385 ± 10 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 5
 Maximum: 9
 Mean: 4.488
 Std Deviation: 2.8674166209461225
Distribution of 100000 samples:
 0: 10.01%
 1: 9.957%
 2: 9.872%
 3: 10.074%
 4: 9.957%
 5: 10.014%
 6: 10.084%
 7: 10.024%
 8: 9.925%
 9: 10.083%

truffle = truffle_shuffle(some_list)
Output Analysis: truffle()
Typical Timing: 132 ± 15 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: (4, 5)
 Maximum: 9
 Mean: 4.526
 Std Deviation: 2.877430034527965
Distribution of 100000 samples:
 0: 10.034%
 1: 9.986%
 2: 9.99%
 3: 9.88%
 4: 9.997%
 5: 10.011%
 6: 10.025%
 7: 10.054%
 8: 9.997%
 9: 10.026%


Single objects with many distribution possibilities

some_tuple = tuple(i for i in range(10))

monty = QuantumMonty(some_tuple)
Output Analysis: monty()
Typical Timing: 446 ± 74 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 5
 Maximum: 9
 Mean: 4.619
 Std Deviation: 2.9110673838496615
Distribution of 100000 samples:
 0: 10.876%
 1: 8.985%
 2: 8.851%
 3: 9.611%
 4: 11.533%
 5: 11.774%
 6: 9.782%
 7: 8.96%
 8: 8.84%
 9: 10.788%

rand_value = RandomValue(collection, zero_cool, flat)
Output Analysis: rand_value()
Typical Timing: 301 ± 12 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 5
 Maximum: 9
 Mean: 4.574
 Std Deviation: 2.890134404638801
Distribution of 100000 samples:
 0: 9.828%
 1: 10.011%
 2: 10.04%
 3: 10.024%
 4: 10.102%
 5: 10.066%
 6: 9.982%
 7: 10.002%
 8: 9.861%
 9: 10.084%


Weighted Tables:

population = ('A', 'B', 'C', 'D')
cum_weights = (1, 3, 6, 10)
rel_weights = (1, 2, 3, 4)
cum_weighted_table = zip(cum_weights, population)
rel_weighted_table = zip(rel_weights, population)

Cumulative Base Case
Output Analysis: Random.choices(population, cum_weights=cum_weights)
Typical Timing: 1086 ± 55 ns
Distribution of 100000 samples:
 A: 9.991%
 B: 20.111%
 C: 30.153%
 D: 39.745%

cum_weighted_choice = CumulativeWeightedChoice(cum_weighted_table)
Output Analysis: cum_weighted_choice()
Typical Timing: 292 ± 3 ns
Distribution of 100000 samples:
 A: 9.991%
 B: 20.051%
 C: 29.885%
 D: 40.073%

Output Analysis: cumulative_weighted_choice(tuple(zip(cum_weights, population)))
Typical Timing: 118 ± 9 ns
Distribution of 100000 samples:
 A: 9.822%
 B: 20.182%
 C: 29.681%
 D: 40.315%

Relative Base Case
Output Analysis: Random.choices(population, weights=rel_weights)
Typical Timing: 1400 ± 111 ns
Distribution of 100000 samples:
 A: 10.069%
 B: 19.974%
 C: 30.157%
 D: 39.8%

rel_weighted_choice = RelativeWeightedChoice(rel_weighted_table)
Output Analysis: rel_weighted_choice()
Typical Timing: 319 ± 26 ns
Distribution of 100000 samples:
 A: 10.186%
 B: 19.86%
 C: 29.875%
 D: 40.079%


Random Matrix Values:

some_matrix = {'A': (1, 2, 3, 4), 'B': (10, 20, 30, 40), 'C': (100, 200, 300, 400)}

flex_cat = FlexCat(some_matrix)
Output Analysis: flex_cat()
Typical Timing: 710 ± 6 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 4
 Maximum: 400
 Mean: 39.626
 Std Deviation: 86.79876813728494
Distribution of 100000 samples:
 1: 13.82%
 2: 13.762%
 3: 13.804%
 4: 13.808%
 10: 8.416%
 20: 8.465%
 30: 8.275%
 40: 8.396%
 100: 2.807%
 200: 2.809%
 300: 2.812%
 400: 2.826%

Output Analysis: flex_cat("C")
Typical Timing: 582 ± 82 ns
Statistics of 1000 samples:
 Minimum: 100
 Median: 200
 Maximum: 400
 Mean: 248.7
 Std Deviation: 112.47649070343971
Distribution of 100000 samples:
 100: 25.171%
 200: 25.12%
 300: 24.799%
 400: 24.91%


Random Integers:

Base Case
Output Analysis: Random.randrange(10)
Typical Timing: 426 ± 8 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 4
 Maximum: 9
 Mean: 4.437
 Std Deviation: 2.861856254465137
Distribution of 100000 samples:
 0: 10.023%
 1: 10.049%
 2: 9.904%
 3: 9.96%
 4: 10.119%
 5: 9.948%
 6: 9.896%
 7: 10.059%
 8: 9.864%
 9: 10.178%

Output Analysis: random_below(10)
Typical Timing: 60 ± 2 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 5
 Maximum: 9
 Mean: 4.545
 Std Deviation: 2.901446775902221
Distribution of 100000 samples:
 0: 9.943%
 1: 9.954%
 2: 10.043%
 3: 9.999%
 4: 10.008%
 5: 10.077%
 6: 10.188%
 7: 9.934%
 8: 9.942%
 9: 9.912%

Output Analysis: random_index(10)
Typical Timing: 71 ± 17 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 4
 Maximum: 9
 Mean: 4.507
 Std Deviation: 2.8337221072259324
Distribution of 100000 samples:
 0: 10.022%
 1: 9.995%
 2: 10.02%
 3: 10.117%
 4: 10.011%
 5: 9.838%
 6: 9.852%
 7: 10.105%
 8: 10.064%
 9: 9.976%

Output Analysis: random_range(10)
Typical Timing: 81 ± 15 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 4
 Maximum: 9
 Mean: 4.49
 Std Deviation: 2.9062598552686834
Distribution of 100000 samples:
 0: 10.047%
 1: 10.203%
 2: 9.984%
 3: 9.953%
 4: 9.862%
 5: 9.958%
 6: 10.065%
 7: 10.087%
 8: 9.947%
 9: 9.894%

Output Analysis: random_below(-10)
Typical Timing: 63 ± 5 ns
Statistics of 1000 samples:
 Minimum: -9
 Median: -5
 Maximum: 0
 Mean: -4.603
 Std Deviation: 2.903760117988885
Distribution of 100000 samples:
 -9: 9.985%
 -8: 9.983%
 -7: 10.032%
 -6: 9.933%
 -5: 10.127%
 -4: 9.876%
 -3: 10.076%
 -2: 9.983%
 -1: 10.1%
 0: 9.905%

Output Analysis: random_index(-10)
Typical Timing: 70 ± 8 ns
Statistics of 1000 samples:
 Minimum: -10
 Median: -5
 Maximum: -1
 Mean: -5.452
 Std Deviation: 2.7995595249134344
Distribution of 100000 samples:
 -10: 9.904%
 -9: 10.014%
 -8: 10.134%
 -7: 10.014%
 -6: 9.988%
 -5: 10.132%
 -4: 10.02%
 -3: 9.896%
 -2: 10.02%
 -1: 9.878%

Output Analysis: random_range(-10)
Typical Timing: 86 ± 8 ns
Statistics of 1000 samples:
 Minimum: -10
 Median: -5
 Maximum: -1
 Mean: -5.311
 Std Deviation: 2.870979192108769
Distribution of 100000 samples:
 -10: 10.023%
 -9: 10.21%
 -8: 10.058%
 -7: 9.955%
 -6: 10.012%
 -5: 9.913%
 -4: 9.959%
 -3: 10.027%
 -2: 9.856%
 -1: 9.987%

Base Case
Output Analysis: Random.randrange(1, 10)
Typical Timing: 571 ± 44 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 5
 Maximum: 9
 Mean: 4.938
 Std Deviation: 2.6254616830281585
Distribution of 100000 samples:
 1: 11.0%
 2: 11.134%
 3: 11.222%
 4: 10.986%
 5: 11.035%
 6: 11.148%
 7: 11.149%
 8: 11.164%
 9: 11.162%

Output Analysis: random_range(1, 10)
Typical Timing: 93 ± 23 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 5
 Maximum: 9
 Mean: 4.921
 Std Deviation: 2.6041391169713917
Distribution of 100000 samples:
 1: 11.055%
 2: 11.053%
 3: 11.208%
 4: 11.068%
 5: 10.985%
 6: 11.198%
 7: 11.21%
 8: 11.084%
 9: 11.139%

Output Analysis: random_range(10, 1)
Typical Timing: 83 ± 13 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 5
 Maximum: 9
 Mean: 5.102
 Std Deviation: 2.5857846550481116
Distribution of 100000 samples:
 1: 11.295%
 2: 11.039%
 3: 11.014%
 4: 10.926%
 5: 10.936%
 6: 11.139%
 7: 11.152%
 8: 11.334%
 9: 11.165%

Base Case
Output Analysis: Random.randint(-5, 5)
Typical Timing: 630 ± 13 ns
Statistics of 1000 samples:
 Minimum: -5
 Median: 0
 Maximum: 5
 Mean: -0.13
 Std Deviation: 3.1434027710398458
Distribution of 100000 samples:
 -5: 9.195%
 -4: 9.168%
 -3: 9.052%
 -2: 8.95%
 -1: 9.095%
 0: 9.033%
 1: 9.02%
 2: 9.053%
 3: 9.119%
 4: 9.134%
 5: 9.181%

Output Analysis: random_int(-5, 5)
Typical Timing: 56 ± 5 ns
Statistics of 1000 samples:
 Minimum: -5
 Median: 0
 Maximum: 5
 Mean: 0.021
 Std Deviation: 3.205438165654398
Distribution of 100000 samples:
 -5: 9.063%
 -4: 8.923%
 -3: 8.957%
 -2: 9.117%
 -1: 9.278%
 0: 9.074%
 1: 9.102%
 2: 9.149%
 3: 9.027%
 4: 9.114%
 5: 9.196%

Base Case
Output Analysis: Random.randrange(1, 20, 2)
Typical Timing: 735 ± 55 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 11
 Maximum: 19
 Mean: 10.328
 Std Deviation: 5.717788830405431
Distribution of 100000 samples:
 1: 10.089%
 3: 10.021%
 5: 10.074%
 7: 10.017%
 9: 9.923%
 11: 10.06%
 13: 9.943%
 15: 9.878%
 17: 10.031%
 19: 9.964%

Output Analysis: random_range(1, 20, 2)
Typical Timing: 71 ± 5 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 9
 Maximum: 19
 Mean: 9.8
 Std Deviation: 5.743952732482484
Distribution of 100000 samples:
 1: 10.008%
 3: 10.11%
 5: 10.123%
 7: 9.91%
 9: 10.028%
 11: 9.981%
 13: 9.851%
 15: 10.031%
 17: 10.016%
 19: 9.942%

Output Analysis: random_range(1, 20, -2)
Typical Timing: 81 ± 15 ns
Statistics of 1000 samples:
 Minimum: 2
 Median: 10
 Maximum: 20
 Mean: 10.806
 Std Deviation: 5.714106668151638
Distribution of 100000 samples:
 2: 9.809%
 4: 10.177%
 6: 10.0%
 8: 9.91%
 10: 9.833%
 12: 10.183%
 14: 9.95%
 16: 10.099%
 18: 9.865%
 20: 10.174%

Output Analysis: random_range(20, 1, -2)
Typical Timing: 82 ± 16 ns
Statistics of 1000 samples:
 Minimum: 2
 Median: 10
 Maximum: 20
 Mean: 10.776
 Std Deviation: 5.772273654561359
Distribution of 100000 samples:
 2: 9.964%
 4: 10.086%
 6: 9.958%
 8: 9.849%
 10: 10.029%
 12: 10.008%
 14: 10.145%
 16: 10.006%
 18: 9.964%
 20: 9.991%

Output Analysis: d(10)
Typical Timing: 70 ± 19 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 5
 Maximum: 10
 Mean: 5.467
 Std Deviation: 2.8264642046026163
Distribution of 100000 samples:
 1: 9.976%
 2: 9.965%
 3: 10.17%
 4: 9.836%
 5: 10.119%
 6: 10.063%
 7: 10.063%
 8: 9.952%
 9: 9.963%
 10: 9.893%

Output Analysis: dice(3, 6)
Typical Timing: 109 ± 8 ns
Statistics of 1000 samples:
 Minimum: 3
 Median: 11
 Maximum: 18
 Mean: 10.686
 Std Deviation: 2.9264258008649335
Distribution of 100000 samples:
 3: 0.481%
 4: 1.363%
 5: 2.759%
 6: 4.672%
 7: 6.953%
 8: 9.694%
 9: 11.579%
 10: 12.55%
 11: 12.431%
 12: 11.729%
 13: 9.798%
 14: 6.907%
 15: 4.521%
 16: 2.707%
 17: 1.371%
 18: 0.485%

Output Analysis: ability_dice(4)
Typical Timing: 178 ± 3 ns
Statistics of 1000 samples:
 Minimum: 3
 Median: 12
 Maximum: 18
 Mean: 12.144
 Std Deviation: 2.8130370024543185
Distribution of 100000 samples:
 3: 0.082%
 4: 0.332%
 5: 0.804%
 6: 1.656%
 7: 2.917%
 8: 4.763%
 9: 7.069%
 10: 9.355%
 11: 11.397%
 12: 12.87%
 13: 13.256%
 14: 12.114%
 15: 10.237%
 16: 7.313%
 17: 4.173%
 18: 1.662%

Output Analysis: plus_or_minus(5)
Typical Timing: 52 ± 5 ns
Statistics of 1000 samples:
 Minimum: -5
 Median: 0
 Maximum: 5
 Mean: 0.021
 Std Deviation: 3.1145239217670584
Distribution of 100000 samples:
 -5: 9.172%
 -4: 8.995%
 -3: 9.156%
 -2: 9.086%
 -1: 9.086%
 0: 9.107%
 1: 9.222%
 2: 9.03%
 3: 9.053%
 4: 9.068%
 5: 9.025%

Output Analysis: plus_or_minus_linear(5)
Typical Timing: 81 ± 11 ns
Statistics of 1000 samples:
 Minimum: -5
 Median: 0
 Maximum: 5
 Mean: -0.094
 Std Deviation: 2.3880676009834536
Distribution of 100000 samples:
 -5: 2.749%
 -4: 5.469%
 -3: 8.444%
 -2: 11.049%
 -1: 13.939%
 0: 16.743%
 1: 13.917%
 2: 11.114%
 3: 8.217%
 4: 5.554%
 5: 2.805%

Output Analysis: plus_or_minus_gauss(5)
Typical Timing: 95 ± 13 ns
Statistics of 1000 samples:
 Minimum: -5
 Median: 0
 Maximum: 5
 Mean: 0.014
 Std Deviation: 1.6292508887395023
Distribution of 100000 samples:
 -5: 0.185%
 -4: 1.144%
 -3: 4.467%
 -2: 11.487%
 -1: 20.441%
 0: 24.6%
 1: 20.269%
 2: 11.638%
 3: 4.382%
 4: 1.179%
 5: 0.208%


Random Floats:

Base Case
Output Analysis: Random.random()
Typical Timing: 29 ± 1 ns
Statistics of 1000 samples:
 Minimum: 0.0005160950171712031
 Median: (0.5167103177579265, 0.5173318601933093)
 Maximum: 0.9966317692137828
 Mean: 0.5060011284426204
 Std Deviation: 0.29186002723923504
Post-processor distribution of 100000 samples using round method:
 0: 49.973%
 1: 50.027%

Output Analysis: canonical()
Typical Timing: 40 ± 5 ns
Statistics of 1000 samples:
 Minimum: 0.002171427577276594
 Median: (0.4896001664461122, 0.49022315945640643)
 Maximum: 0.9985427547641396
 Mean: 0.494152595134755
 Std Deviation: 0.2908111699122266
Post-processor distribution of 100000 samples using round method:
 0: 49.933%
 1: 50.067%

Output Analysis: random_float(0.0, 10.0)
Typical Timing: 36 ± 1 ns
Statistics of 1000 samples:
 Minimum: 0.00967672403962535
 Median: (5.0784414875237935, 5.085279087243409)
 Maximum: 9.996186981613132
 Mean: 5.0176373667425205
 Std Deviation: 2.850888395390293
Post-processor distribution of 100000 samples using floor method:
 0: 9.916%
 1: 9.941%
 2: 9.912%
 3: 10.019%
 4: 10.068%
 5: 10.057%
 6: 10.103%
 7: 9.968%
 8: 9.943%
 9: 10.073%

Base Case
Output Analysis: Random.triangular(0.0, 10.0, 5.0)
Typical Timing: 345 ± 17 ns
Statistics of 1000 samples:
 Minimum: 0.23154816836721404
 Median: (4.929111740288681, 4.934070563233578)
 Maximum: 9.781346014913133
 Mean: 4.984532105276005
 Std Deviation: 2.079746922498676
Post-processor distribution of 100000 samples using round method:
 0: 0.535%
 1: 3.946%
 2: 7.852%
 3: 12.075%
 4: 16.143%
 5: 19.027%
 6: 16.1%
 7: 11.83%
 8: 7.933%
 9: 4.075%
 10: 0.484%

Output Analysis: triangular(0.0, 10.0, 5.0)
Typical Timing: 57 ± 14 ns
Statistics of 1000 samples:
 Minimum: 0.19270308608813086
 Median: (5.170095743722118, 5.172314161490933)
 Maximum: 9.992829817126513
 Mean: 5.156685967054918
 Std Deviation: 2.030401226838472
Post-processor distribution of 100000 samples using round method:
 0: 0.454%
 1: 3.924%
 2: 7.975%
 3: 11.928%
 4: 16.029%
 5: 19.115%
 6: 15.863%
 7: 12.161%
 8: 8.143%
 9: 3.93%
 10: 0.478%


Random Booleans:

Output Analysis: percent_true(33.33)
Typical Timing: 38 ± 3 ns
Statistics of 1000 samples:
 Minimum: False
 Median: False
 Maximum: True
 Mean: 0.337
 Std Deviation: 0.4729214043101186
Distribution of 100000 samples:
 False: 66.635%
 True: 33.365%


Shuffle Performance:

some_small_list = [i for i in range(10)]
some_med_list = [i for i in range(100)]
some_large_list = [i for i in range(1000)]

Base Case:
Random.shuffle()  # fisher_yates in python
Typical Timing: 3465 ± 180 ns
Typical Timing: 33621 ± 3192 ns
Typical Timing: 315706 ± 4991 ns

Fortuna.shuffle()  # knuth_b in cython
Typical Timing: 456 ± 27 ns
Typical Timing: 3742 ± 27 ns
Typical Timing: 36914 ± 57 ns

Fortuna.knuth_a()  # knuth_a in cython
Typical Timing: 764 ± 50 ns
Typical Timing: 6429 ± 0 ns
Typical Timing: 80988 ± 3846 ns

Fortuna.fisher_yates()  # fisher_yates in cython
Typical Timing: 892 ± 35 ns
Typical Timing: 6327 ± 42 ns
Typical Timing: 76271 ± 271 ns


-------------------------------------------------------------------------
Total Test Time: 2.584 seconds

Legal Information

Fortuna is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. See online version of this license here: http://creativecommons.org/licenses/by-nc/3.0/

Other licensing options are available, please contact the author for details: Robert Sharp

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Fortuna-4.1.4.tar.gz (204.1 kB view details)

Uploaded Source

Built Distribution

Fortuna-4.1.4-cp38-cp38-macosx_10_9_x86_64.whl (182.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file Fortuna-4.1.4.tar.gz.

File metadata

  • Download URL: Fortuna-4.1.4.tar.gz
  • Upload date:
  • Size: 204.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for Fortuna-4.1.4.tar.gz
Algorithm Hash digest
SHA256 84699fbd421f771602514cdfe1a84361e01c8cffd46779af0c3b860bfdcd3a6d
MD5 d3f92cd4b28dc20133835b729794ace0
BLAKE2b-256 2745f912c12987521890438ae50496e059c3aafac2def0dfbf9d9497f0124a46

See more details on using hashes here.

Provenance

File details

Details for the file Fortuna-4.1.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: Fortuna-4.1.4-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 182.2 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for Fortuna-4.1.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0033ee0d3e483df83bb5f012663f057fd9f1fdb0217455096588def08f2d4a35
MD5 2154092366611edca311dc46aad04e9f
BLAKE2b-256 60484954939405800d4a8140242556fefe1d821c4f872a223a1281ad353236eb

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page