This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

Fuzzy is a python library implementing common phonetic algorithms quickly. Typically this is in string similarity exercises, but they’re pretty versatile.

It uses C Extensions (via Pyrex) for speed.

The algorithms are:

Installation

Installation should be easy if you have a C compiler such as gcc. All you should need to do is easy_install/pip install it. If you have Pyrex it will regenerate the C code, otherwise it will use the pre-generated code. Here’s a basic installation on a clean virtualenv:

(fuzzy_cean)Kotai:~ chmullig$ pip install https://bitbucket.org/yougov/fuzzy/get/1.0.tar.gz
Downloading/unpacking https://bitbucket.org/yougov/fuzzy/get/1.0.tar.gz
  Downloading 1.0.tar.gz
  Running setup.py egg_info for package from https://bitbucket.org/yougov/fuzzy/get/1.0.tar.gz
Installing collected packages: Fuzzy
  Running setup.py install for Fuzzy
    building 'fuzzy' extension
    gcc-4.2 -fno-strict-aliasing -fno-common -dynamic -DNDEBUG -g -fwrapv -Os -Wall -Wstrict-prototypes
        -DENABLE_DTRACE -arch i386 -arch ppc -arch x86_64 -pipe -I/System/Library/Frameworks/Python.framework/Versions/2.6/include/python2.6
        -c src/fuzzy.c -o build/temp.macosx-10.6-universal-2.6/src/fuzzy.o
    gcc-4.2 -fno-strict-aliasing -fno-common -dynamic -DNDEBUG -g -fwrapv -Os -Wall -Wstrict-prototypes
        -DENABLE_DTRACE -arch i386 -arch ppc -arch x86_64 -pipe -I/System/Library/Frameworks/Python.framework/Versions/2.6/include/python2.6
        -c src/double_metaphone.c -o build/temp.macosx-10.6-universal-2.6/src/double_metaphone.o
    gcc-4.2 -Wl,-F. -bundle -undefined dynamic_lookup -arch i386 -arch ppc -arch x86_64
        build/temp.macosx-10.6-universal-2.6/src/fuzzy.o build/temp.macosx-10.6-universal-2.6/src/double_metaphone.o
        -o build/lib.macosx-10.6-universal-2.6/fuzzy.so
Successfully installed Fuzzy
Cleaning up...
(fuzzy_cean)Kotai:~ chmullig$

Usage

The functions are quite easy to use!

>>> import fuzzy
>>> soundex = fuzzy.Soundex(4)
>>> soundex('fuzzy')
'F200'
>>> dmeta = fuzzy.DMetaphone()
>>> dmeta('fuzzy')
['FS', None]
>>> fuzzy.nysiis('fuzzy')
'FASY'

Performance

Fuzzy’s Double Metaphone was ~10 times faster than the pure python implementation by Andrew Collins in some recent testing. Soundex and NYSIIS should be similarly faster. Using iPython’s timeit:

In [3]: timeit soundex('fuzzy')
1000000 loops, best of 3: 326 ns per loop

In [4]: timeit dmeta('fuzzy')
100000 loops, best of 3: 2.18 us per loop

In [5]: timeit fuzzy.nysiis('fuzzy')
100000 loops, best of 3: 13.7 us per loop

Distance Metrics

We recommend the Python-Levenshtein module for fast, C based string distance/similarity metrics. Among others functions it includes:

In testing it’s been several times faster than comparable pure python implementations of those algorithms.

Release History

Release History

1.1

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
Fuzzy-1.1.tar.gz (20.0 kB) Copy SHA256 Checksum SHA256 Source Jun 4, 2015

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting