Generalized Molecular Dynamics Analysis Tool
Project description
GEMDAT
Gemdat is a Python library for the analysis of diffusion in solid-state electrolytes from Molecular Dynamics simulations. Gemdat is built on top of Pymatgen, making it straightforward to integrate it into your Pymatgen-based workflows.
With Gemdat, you can:
- Explore your MD simulation via an easy-to-use Python API
- Load and analyze trajectories from VASP, LAMMPS, GROMACS, and ASE simulation data
- Find jumps and transitions between sites
- Effortlessly calculate tracer and jump diffusivity
- Easily perform kinisi diffusion analysis
- Characterize and visualize diffusion pathways
- Plot main structural and diffusion properties
To install:
pip install gemdat
The source code is available from Github.
Suggestions, improvements, and edits are most welcome.
Usage
The following snippet to analyze the diffusion trajectory from VASP data.
from gemdat import Trajectory
trajectory = Trajectory.from_vasprun('../example/vasprun.xml')
trajectory.plot_displacement_per_element()
diff_trajectory = trajectory.filter('Li')
diff_trajectory.plot_msd_per_element()
diff_trajectory.plot_displacement_per_atom()
diff_trajectory.plot_displacement_histogram()
diff_trajectory.plot_frequency_vs_occurence()
diff_trajectory.plot_vibrational_amplitudes()
Characterize transitions and jumps between sites:
from gemdat.io import load_known_material
sites = load_known_material('argyrodite', supercell=(2, 1, 1))
transitions = trajectory.transitions_between_sites(
sites=sites,
floating_specie='Li',
)
jumps = transitions.jumps()
jumps.plot_jumps_vs_distance()
jumps.plot_jumps_vs_time()
jumps.plot_collective_jumps()
jumps.plot_jumps_3d()
jumps.jump_diffusivity(dimensions=3)
To calculate different metrics, such as tracer diffusivity:
from gemdat import TrajectoryMetrics
metrics = TrajectoryMetrics(diff_trajectory)
metrics.tracer_diffusivity(dimensions=3)
metrics.haven_ratio(dimensions=3)
metrics.tracer_conductivity(dimensions=3)
metrics.particle_density()
metrics.vibration_amplitude()
Development
Check out our Contributing Guidelines to get started with development.
How to Cite
- V. Azizi, S. Smeets, A.K. Lavrinenko, S. Ciarella, T. Famprikis, V. Landgraf, & A. Vasileiadis. GEMDAT (Version 1.7.0) [Computer software]. https://github.com/GEMDAT-repos/GEMDAT, doi: 10.5281/zenodo.8401669
Dissemination
- Lorentz workshop 7-11 April (2025): Molecular Dynamics for Materials Science (pdf)
Credits
Some parts of the code in this repository are based on Matlab code to analyse Molecular Dynamics simulations.
For background information on how some of the properties are calculated, check out the accompanying paper:
- Niek J.J. de Klerk, Eveline van der Maas and Marnix Wagemaker, ACS Applied Energy Materials, (2018), doi: 10.1021/acsaem.8b00457
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file gemdat-1.7.0.tar.gz.
File metadata
- Download URL: gemdat-1.7.0.tar.gz
- Upload date:
- Size: 528.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
f378fe03f0a825694b21ebe47270b41cd9431fc87b98caea1dc3f8c5f52dec81
|
|
| MD5 |
37ff5615af15b4e7160181c42b9a82c0
|
|
| BLAKE2b-256 |
881fe2a822878d196630db088cde080622e48d2b7a2003717bb907dfd86011d8
|
Provenance
The following attestation bundles were made for gemdat-1.7.0.tar.gz:
Publisher:
publish.yaml on GEMDAT-repos/GEMDAT
-
Statement:
-
Statement type:
https://in-toto.io/Statement/v1 -
Predicate type:
https://docs.pypi.org/attestations/publish/v1 -
Subject name:
gemdat-1.7.0.tar.gz -
Subject digest:
f378fe03f0a825694b21ebe47270b41cd9431fc87b98caea1dc3f8c5f52dec81 - Sigstore transparency entry: 845527948
- Sigstore integration time:
-
Permalink:
GEMDAT-repos/GEMDAT@4135e1523a37595151133cbd7e881eb723393201 -
Branch / Tag:
refs/tags/1.7.0 - Owner: https://github.com/GEMDAT-repos
-
Access:
public
-
Token Issuer:
https://token.actions.githubusercontent.com -
Runner Environment:
github-hosted -
Publication workflow:
publish.yaml@4135e1523a37595151133cbd7e881eb723393201 -
Trigger Event:
release
-
Statement type:
File details
Details for the file gemdat-1.7.0-py3-none-any.whl.
File metadata
- Download URL: gemdat-1.7.0-py3-none-any.whl
- Upload date:
- Size: 553.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
e9a572c3ce1d61d3dc3160d25ab322b0ba7860af376878ebe07124b523f37dce
|
|
| MD5 |
e1c5ef5bd60f7509ebfb84a774c7353b
|
|
| BLAKE2b-256 |
3243488df0e29359acaa7e3271f714650efc66f96bccf530e4a8148e520b367e
|
Provenance
The following attestation bundles were made for gemdat-1.7.0-py3-none-any.whl:
Publisher:
publish.yaml on GEMDAT-repos/GEMDAT
-
Statement:
-
Statement type:
https://in-toto.io/Statement/v1 -
Predicate type:
https://docs.pypi.org/attestations/publish/v1 -
Subject name:
gemdat-1.7.0-py3-none-any.whl -
Subject digest:
e9a572c3ce1d61d3dc3160d25ab322b0ba7860af376878ebe07124b523f37dce - Sigstore transparency entry: 845527957
- Sigstore integration time:
-
Permalink:
GEMDAT-repos/GEMDAT@4135e1523a37595151133cbd7e881eb723393201 -
Branch / Tag:
refs/tags/1.7.0 - Owner: https://github.com/GEMDAT-repos
-
Access:
public
-
Token Issuer:
https://token.actions.githubusercontent.com -
Runner Environment:
github-hosted -
Publication workflow:
publish.yaml@4135e1523a37595151133cbd7e881eb723393201 -
Trigger Event:
release
-
Statement type: